

禾川 SV-J3 系列 总线伺服产品

SV-J3 Series CANopen EtherCAT

中文操作手册 Ver: 1.2

禾川-工业自动化方案的集大成者

『目录』

目录	2
前言	8
关于使用说明书	8
开箱时的确认事项	8
安全注意事项	8
1 机器简介、选型与安装	12
1.1 关于驱动器	
1.1.1 驱动器型号	13
1.1.2 驱动器各部分名称	16
1.1.3 产品综合参数	17
1.1.4 过载检出特性	19
1.1.5 外形尺寸	20
1.2 关于电机	21
1.2.1 电机型号	21
1.2.2 电机各部分名称	22
1.2.3 电机基本规格	22
1.2.4 输出轴容许负载	25
1.2.5 N-T 特性图	26
1.2.6 编码器规格	28
1.2.7 关于油封	29
1.2.8 电机尺寸	29
1.3 再生电阻及空开选型	30
1.4 驱动器和电机配套选型	31
1.5 外围电缆及连接器配件选型	32
1.6 驱动器和电机的安装	33
1.61 安装环境条件	33
1.6.2 防尘・防水	33
1.6.3 安装方法与空间	33
2 电机驱动器配线说明	37

	2.1 系统配线图	38
	2.2 电机连接器端口说明	40
	2.3 驱动器连接器端口说明	43
	2.4 端口 CN1 使用说明	43
	2.41 CN1用户I/O 端子说明	43
	2.42 STO 安全功能概要	44
	2.5 端口 CN2 使用说明	45
	2.6 通讯网口说明	46
	2.7 用户 I/O 配线说明	47
3	3 调试	48
	面板显示操作	49
	3.1 调整	52
	3.2 自动增益调整	54
	3.3 自适应滤波器	57
	3.4 手动增益调整	58
	3.4.1 总体说明	58
	3.4.2 位置模式的调整	59
	3.4.3 速度模式的调整	60
	3.4.4 增益切换功能	60
	3.4.5 前馈功能	63
	3.4.6 机械共振抑制	63
	3.4.7 低频振动抑制	65
	3.5 惯量辨识和编码器初始角辨识	
4	ł 通讯简介	68
	4.1 CANopen 通讯介绍	69
	4.1.1 对象字典	69
	4.1.2 节点地址 Node_ID	70
	4.1.3 通讯对象标识符 COB-ID	70
	4.1.4 网络管理系统 NMT	
	4.1.5 服务过程对象 SDO	
	4.1.6 过程数据对象 PDO	79
	4.1.7 紧急对象 FMCY	84

	4.1.8 EDS 文件	84
	4.1.9 SDO 中止代码	84
	4.2 EtherCAT 通讯介绍	86
	4.2.1 EtherCAT 支持的控制模式	86
	4.2.2 EtherCAT 帧结构	86
	4.2.3 EtherCAT 状态机	87
	4.2.4 过程数据 PDO	88
	4.2.5 邮箱数据 SDO	91
	4.2.6 分布式时钟	91
	4.2.7 CiA402 控制流程介绍	91
	4.2.8 EtherCAT 伺服从站地址设置	92
	4.2.9 ESI 文件	92
	4.3 多台伺服组网说明	93
	4.3.1 多台伺服组网	93
	4.3.2 通讯距离与波特率	94
5	5 控制模式	95
	5.1 伺服参数配置	96
	5.2 轮廓位置模式(PP)	96
	5.2.1 轮廓位置模式的控制字	97
	5.2.2 轮廓位置模式的状态字	99
	5.2.3 轮廓位置模式相关对象	100
	5.2.4 轮廓位置模式使用举例	100
	5.3 轮廓速度模式(PV)	101
	5.3.1 轮廓速度模式的控制字	102
	5.32 轮廓速度模式的状态字	102
	5.3.3 轮廓速度模式相关对象	103
	5.3.4 轮廓速度模式使用举例	103
	5.4 轮廓转矩模式(PT)	104
	5.4.1 轮廓转矩模式的控制字	105
	5.4.2 轮廓转矩模式的状态字	105
	5.4.2 轮廓转矩模式的状态字 5.4.3 轮廓转矩模式相关对象	
		106

	5.5.1 原点回归模式中的控制字	108
	5.5.2 原点回归模式的状态字	108
	5.5.3 原点回归模式相关对象	109
	5.5.4 原点回归模式使用教程	109
	5.5.5 原点回归模式介绍	110
	5.6 周期同步位置模式(CSP)	136
	5.6.1 周期同步位置模式的控制字	137
	5.6.2 周期同步位置模式的状态字	137
	5.6.3 周期同步位置模式相关对象	138
	5.6.4 周期同步位置模式使用举例	138
	5.7 周期同步速度模式(CSV)	139
	5.7.1 周期同步速度模式控制字	140
	5.7.2 周期同步速度模式的状态字	140
	5.7.3 周期同步速度模式相关对象	141
	5.7.4 周期同步速度模式使用举例	141
	5.8 周期同步转矩模式(CST)	142
	5.8.1 周期同步转矩模式的控制字	143
	5.8.2 周期同步转矩模式的状态字	143
	5.8.3 周期同步转矩模式相关对象	144
	5.8.4 周期同步转矩模式的简单使用举例	144
	5.9 插补位置模式(IP)	145
	5.9.1 插补位置模式的控制字	146
	5.9.2 插补位置模式的状态字	147
	5.9.3 插补位置模式相关对象	148
	5.9.4 插补位置模式使用举例	149
	5.10 探针功能	149
	5.11 电子齿轮比补充说明	152
	5.12 指令单位说明	152
6	参数说明	153
	6.1 通用参数一览表	154
	6.2 参数详细说明	160
	P00 组 基本设置	160
	P01 组 增益调整	166

	P02 组 振动抑制	176
	P03 组 速度转矩控制	181
	P04 组 数字输入输出	189
	P06 组 扩展参数	202
	P07 组 辅助功能	210
	P08 组 内部位置指令	216
	P09 组 通信设定	231
	P14 组 整流单元功能参数	236
	P18 组 电机型号	242
	P20 组 键盘和通信操控接口	243
	P21 组 状态参数	245
	数字量输入 DI 功能定义表	253
	数字量输出 DO 功能定义表	255
	6.3 总线相关功能码	256
7	′报警及故障处理	258
	7.1 报警及故障代码一览表	259
	7.2 报警及故障处理	261
8	。 B 应用举例	271
	8.1 J3EN 与倍福 PLC 连接 CANopen	272
	8.2 J3EN 与施耐德 PLC 连接 CANopen	284
	8.3 J3EN 与汇川 PLCPLC 连接 CANopen	295
	8.4 J3EB 与倍福 PLC 连接 EtherCAT	305
	8.5 J3EB 与欧姆龙 PLC 连接 EtherCAT	323
	8.6 J3EB 与汇川 PLC 连接 EtherCAT	335
	8.7 J3EB 与禾川 HCQ1 连接 EtherCAT	345
9) 参数列表及对象字典	349
	9.1 1000H 对象组一览表	
	9.2 2100H 对象组一览表	353
	2100h 组:基本设置	
	2101h 组:增益调整	
	2102h 组:振动抑制	
	2103h 组:速度转矩控制	359

禾川 SV-J3 系列总线伺服产品中文操作手册

	2104h 组:数字输入输出	.361
	2106h 组:扩展参数	.364
	2107h 组:辅助功能	.367
	2108h 组:内部位置指令	.368
	2109h 组:通信设定	.374
	2114h 组:键盘和通信操控接口	.375
	2115h 组:状态参数	.376
	2120h 组:虚拟 DI 虚拟 DO	.378
9	.3 6000H 对象组一览表	379
	6000h 对象字典详细说明	382

前言

感谢您使用本产品,本操作手册提供 SV-J3 系列驱动器及电机相关信息。 错误的使用 方法及处理方法,不但不能充分发挥产品的性能,还会导致产品使用寿命的缩短,甚至发 生意外事故。希望在仔细阅读本使用说明书的基础上,正确的使用本产品。

关干使用说明书

- ◆ 本使用说明书的内容虽然已经竭力完善,但仍难免疏忽之处,如果发现内容有疑问之 处,请向本公司的技术人员咨询。
- ◆ 应用本产品的机器的使用说明书上,请注明以下事项。
 - · 因是高压电机器,存在危险。
 - 切断电源后的端子及机械内部还残留电压,存在危险。
 - 局部高温。
 - 严禁拆解。
- ◆ 本产品因性能升级等原因,会出现规格及功能随时会有变动和追加。恕不另行通知。
- ◆ 搭载本产品的装置,有计划取得安全规格等时,请事前向公司咨询。
- ◆ 为了延长电机、驱动器使用寿命,请在正确的使用条件下使用。详细请遵照使说明书。
- ◆ 使用说明书不定期更新,因此记载内容时常会变更。需要新版本使用说明书的客户请联 系本公司索取。

不经过本公司的同意,禁止转载本使用说明书的部分或全部内容。

开箱时的确认事项

- ◆ 实物是否与您订购的产品相符。
- ◆ 在运送过程中是否有损伤。
- ◆ 如果发现问题,请联系经销商。

安全注意事项

在接收检验、安装、配线、操作、维护及检查时,应随时注意以下安全注意事项。

◆ 对于忽视说明书记载内容,错误的使用本产品,而可能带来的危害和损害的程度按下列 表示加以区分和说明。

▲ 危险 该标志表示「可能会发生导致死亡或重伤事故的危险」的内容 ▲ 注意 该标志表示「可能会导致伤害或财产损失事故发生」的内容

- ◆ 对应当遵守的事项用以下的图形标志进行说明。
 - 该图形表示禁止实施的「禁止实施」事项内容。
 - 该图形表示必须实行的「强制实行」内容。

<u>承</u> 危险									
	关于安装和配线								
	切勿将电机直接连接到商用电源。	否则,会引发火灾、故障。							
O	请勿在电机、驱动器的周围放置可燃物。	否则,会引发火灾事故。							
	驱动器必须要用外箱保护。设置保护外箱时,外箱壁、其	否则,会引发触电、火灾、							
	他机器和驱动器之间要保持使用说明书规定的距离。	故障。							
	应安装在尘埃较少、不会接触到水、油等的地方。	否则,会引发触电、火灾、							
		故障、破损。							
	电机、驱动器安装在金属等非可燃物上。	否则,会引发火灾事故。							
	务必由专业电工进行接线作业。	否则,会引发触电。							
U	电机、驱动器的 FG 端子必须接地。	否则,会引发触电。							
	必须事先切断上位断路器,进行正确的接线。	否则,可能会引发触电、受							
		伤、故障、破损。							
	电缆应确保连接好、通电部位须用绝缘物切实地做到绝	否则,会引发触电、火灾、							
	缘。	故障。							
	关于操作和运行								
	请勿触摸驱动器内部。	否则,会引发烧伤、触电事							
		故。							
	请勿让电缆线受到损伤、承受过大的外力、重压、受夹。	否则,会引发触电、故障、							
		破损。							
\bigcirc	切勿接触运转中的电机旋转部。	否则,会引发受伤事故。							
	请勿在有水的地方、存在腐蚀性、易燃性气体的环境内和	否则,会引发火灾。							
	靠近可燃物的场所使用。								
	请勿在有激烈振动、冲击的地方使用。	否则,会引发触电、受伤、							
		火灾事故。							

	请勿将电缆线浸在油和水中使用。	
	相勿何·电观线及任冲相小中使用。 	
		火灾事故。
	请勿用湿手进行接线和操作。	否则,会引发触电、受伤、
\bigcirc		火灾事故。
S	使用轴端带键槽的电机时,请勿裸手接触键槽。	否则,会引发受伤事故。
	电机、驱动器、散热器的温度会升高,请勿触摸。	否则,会引发烧伤或部件
		损伤事故。
	请勿用外部动力驱动电机。	否则,会引发火灾事故。
	关于其它使用上的注意事项	
	在地震发生后务必进行相关安全确认。	否则,会引发触电、受伤、
U		火灾事故。
	为防止发生地震时造成火灾及人身事故,应切实地进行设	否则,会引发受伤、触电、
	置,安装。	火灾、故障、破损。
	务必在外部设置紧急停止电路,以确保紧急时可以及时地	否则,引发受伤、触电、
	停止运转、切断电源。	火灾、故障、破损。
	驱动器有危险高压部分。进行配线和点检工作时,必须切	会引发触电事故。
	断电源,放置使其放电后(5分钟以上)进行。并且,绝	
•	对不充许对其进行分解。	

	<u> </u>								
	关于安装和接线								
	电机和驱动器要按指定的匹配组合。	否则,会引发火灾、故障。							
U	不可直接触碰连接器端子。	否则,会引发触电、故障。							
	注意通风口不可堵塞,或异物进入。	否则,会引发触电、火灾。							
	试运转须在电机固定,并与其它机械系统分离状态下实	否则,会引发受伤事故。							
	施。动作确认后再安装到机械系统上。								
U	遵守指定的安装方法、安装方向。	否则,会引发受伤、故障。							
	请根据设备本身的重量和产品的额定输出进行妥当安装。	否则,会引发受伤、故障。							
	关于操作和运转								
	请勿站在产品上、或在产品上放置重物。	否则,会引发触电、受伤、							
\bigcirc		故障、破损。							
	禁止极端的增益调整及变更,会导致运作不稳定。	否则,会引发故障,破损。							
	请勿在受日光直接照射的地方使用。	否则,会引发故障。							
	请勿使电机及电机轴部受到较强的冲击。	否则,会引发故障。							
	电机内置制动器作是保持用制动,禁止用在通常的制动。	否则,会引发受伤、故障。							
	停电后恢复供电时,有可能出现突然启动的情况,故请勿	否则,会引发受伤事故。							

	靠近机器。务必做好机器设定,以确保即使重启也可确保	
	人身安全。	
	不要使用有故障、破损的电机和驱动器。	否则,会引发触电、火灾、
		受伤。
•	请确认电源规格是否正常。	引发故障发生原因。
	保持制动器不是确保机械安全的停止装置。请在机械侧设	否则,会引发受伤事故。
	置确保安全用的停止装置。	
	报警时,排除故障原因,确保安全后,解除报警,重启。	否则,会引发受伤事故。
	制动器用继电器与紧急停止用断路继电器需串联。	否则,会引发受伤、故障。
	关于搬运和保管	
	不能保存在雨水及水滴溅到的场所、有有毒性气体及液体	否则,会引发故障的。
\bigcirc	的地方。	
0	搬运时,切勿抓持电缆或电机轴部。	否则,会引发受伤,故障。
	进行搬运时或安装作业时要以防落下或翻倒。	否则,会引发受伤,故障。
	需长期保存时,请按本说明书记载的联系方法进行咨询。	引发故障的原因。
	请保管在符合本说明书中规定保管环境的保管场所。	否则,会引发故障。
	关于其他使用上的注意事项	
	废弃电池时,请将电池用胶带等进行绝缘处理,并根据有关	部门的规定废弃处理。
U	废弃时请作为工业废弃物处理。	
	关于维护和点检	
	除本公司外请勿进行拆卸修理工作。	否则,会引发故障。
V	主回路电源开关不要频繁的打开和关闭。	否则,会引发故障。
	通电中或切断电源后的一定时间内,电机,驱动器的散热	否则,会烧伤或触电。
	器及再生电阻器等可能会处于高温状态,切勿触摸。	
U	驱动器发生故障时,请切断控制电源和主回路电源。	否则,会引发火灾事故。
	长时间不使用时务必切断主电源。	因误动作等引发受伤事故。
ĺ	¥ T /4+510 F+5	

关于维护和点检

<保证期限>

●产品的保证期间为本公司制造月起 18 个月。但是,对应带制动器的电机,轴的加速、减速次数不超出使用寿命为前提。

<保证内容>

- ●按照本说明书的正常使用状态下,在保证期间内,发生故障时为无偿修理。但是,即使在保证期间 内有如下的故障发生时为有偿修理。
- ①错误的使用方法,以及不适当的修理以及改造时。
- ②购买之后的掉落,以及在运输过程中受到损伤的原因时。
- ③超出产品规格使用该产品的原因时。
- ④火灾、地震、落雷、风灾与水灾、盐害、电压异常等其他天灾的原因时。
- ⑤水、油、金属片、其他异物侵入的原因时。
- ●保证范围为交付品本体,如由交付品的故障诱发的损害,判定为补偿范围外。

1

1 机器简介、选型与安装

- ◆ 1.1 关于驱动器
- ◆ 1.2 关于电机
- ◆ 1.3 外围制动电阻选型表
- ◆ 1.4 驱动器和电机配套型号
- ◆ 1.5 外围电缆及连接器配件选型
- ◆ 1.6 驱动器和电机的安装

1.1 关于驱动器

1.1.1 驱动器型号

铭牌示例

一体机铭牌标签示例

MODEL:SV-J3MB1L1M2SZKRA-A

S/N: 91921016530 P/N: 4030211932000000000

1KW 驱动器铭牌标签

MODEL:SV-J3FB100A-A

OUTPUT:1KW 6A

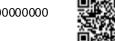
S/N: 10122100101

P/N: 10002210132000000000

3KW 整流单元铭牌标签

MODEL:SV-J3RB300A-A

INPUT:1PH AC200-240V 50/60HZ 22A 3PH AC200-240V 50/60HZ 20A


OUTPUT:3KW 22.4A/35.4A

S/N: 91921016531

KCFa

P/N: 4030211932000000000

4KW 整流单元铭牌标签

MODEL:SV-J3RB400A-A

INPUT:1PH AC200-240V 50/60HZ 31A 3PH AC200-240V 50/60HZ 28A

OUTPUT:4KW 30A/52A

S/N: 91921016532 P/N: 4030211934000000000

KCFa

5KW 整流单元铭牌标签

MODEL:SV-J3RB500A-A

INPUT:1PH AC200-240V 50/60HZ 38A 3PH AC200-240V 50/60HZ 25A

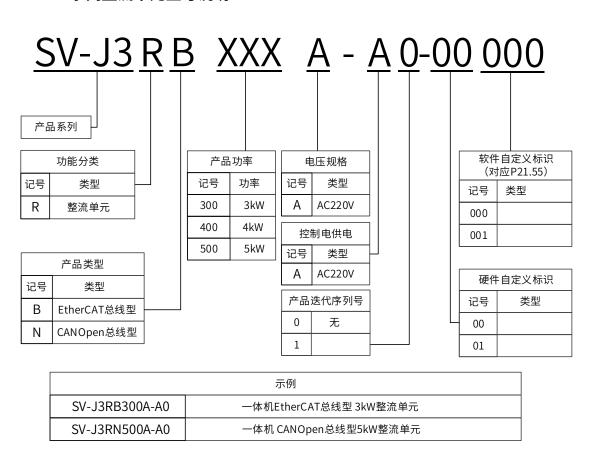
OUTPUT:5KW 35.5A/51.1A

S/N: 91921016533

P/N: 4030211933000000000

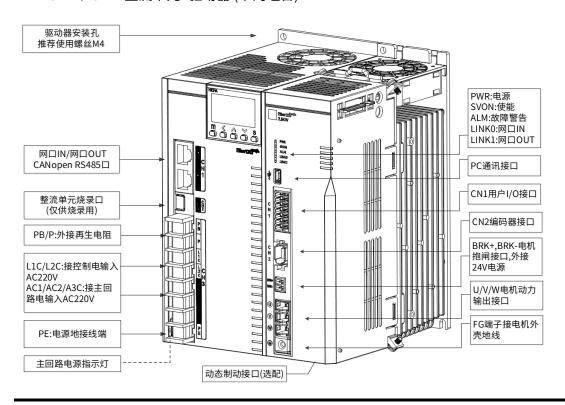


机型识别

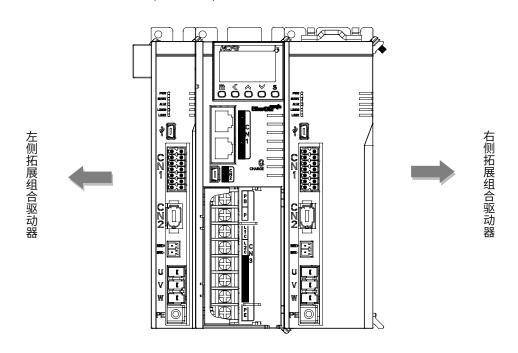

■ J3 系列驱动器型号说明

SV-J3M B 1L1M2S2ZKR A -A 0-00 000 产品系列 电压规格 软件自定义标识 记号 类型 产品类型 (对应P21.55) AC220V 记号 类型 记号 类型 В EtherCAT总线型 控制电供电 000 无 CANOpen总线型 记号 类型 001 AC220V 硬件自定义标识 L Μ S Ζ Κ 记号 类型 2.5kW 1kW 400W 100W Q R 空轴 不含IO和DB 00 3kW 4kW 5kW STO ЗА 01 16A 6A 1.2A 驱动器示例: 02 10 1L1M2S2ZK: 03 DΒ 1x2.5kW+1x1kW+2x400W+2x100W 04 IO+DB 备注: 1.5kW~2.3kW电机请选用2.5kW(L)驱动器 750W~1kW 电机请选用1kW(M)驱动器 产品迭代序列号 200W~400W 电机请选用400W(S)驱动器 0 无 100W及以下电机请选用100W(Z)驱动器 为保证风扇宽度需额外增加空轴(K)

■ J3 系列逆变单元型号说明



■ J3 系列整流单元型号说明

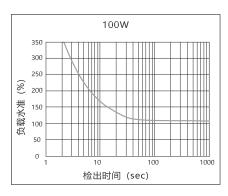


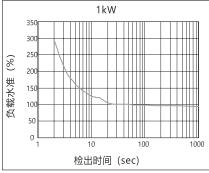
1.1.2 驱动器各部分名称

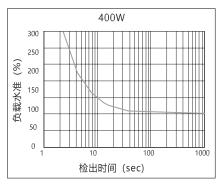
■ 3KW、5KW 整流单元+驱动器 (单向组合)

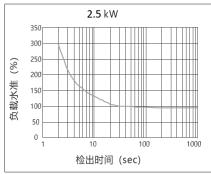
■ 4KW 整流单元+驱动器 (双向组合)

113产品综合参数

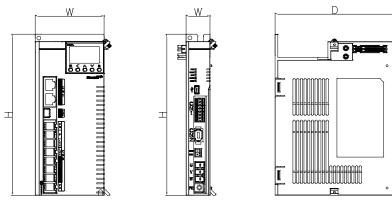

项目		整流的	单元基	本规格								
SV-J3R <u>B</u> □□□A			300)		4	00			5(00	
整流单元功率(W)		3000			40	000			50	000		
最大输出	单相 220V	I _{max} =22.4A			I _{max} :	=30A			I _{max} =	35.5A	١	
电流(A)	三相 220V	I	max=3	5.4A		I _{max}	=52A			I _{max} =.	51.1A	١
控制电源输	ìλ	单相:	单相 200~240V 50/60Hz									
主回路电源	输入	单相/三相 200~240V 50/60Hz										
	规格		SIZE	1		SIZ	ZE 2			SIZ	ZE3	
整流单元	W(mm)		52			5	52			7	'6	
外形尺寸	H(mm)		176	5		1	76			1	76	
	D(mm)		130)		1	30			1	30	
重量	Kg		1			1	.2			1	.5	
环境	温度	使用理	不境温	度 0~!	55°C,	保存环	境温度	-20	~65°C	,		
环境	湿度	使用、	保存	环境湿	度 20 ⁻	~85%F	H 以下	(无	结露)			
保存	环境	室内(无阳光直射)、无腐蚀性气体、易燃性气体、油雾、粉尘										
海	拔	海拔 1000m 以下										
震动		5.8m/S(0.6G)以下 10~60Hz(共振频率时不可连续使用)										
项目		驱动器	本基器	规格								
SV-J3E <u>B</u> □	□□A	01	.0	04	0		100			2.	50	
驱动器功率	(W)	10	0	40	0	-	1000		2500			
驱动器额定	性流(A)	1.	2	3		6 15.		5.6				
驱动器最大	:电流(A)	3.	6	9			18	ı			7.5	1
适用电机 (I	(w)	0.5	0.1	0.2	0.4	0.75	0.85	1	1.3	1.5	2	2.5
 驱动器	规格	SIZE A SIZE B										
外形	W(mm)		26						52			
尺寸	H(mm) D(mm)	176					176					
		130 130										
重量				0.3						.7		
环境温度		使用环境温度 0~55°C,保存环境温度-20~65°C										
环境湿度		使用、保存环境湿度 20~85%RH 以下(无结露)										
保存环境		室内(无阳光直射)、无腐蚀性气体、易燃性气体、油雾、粉尘										
海拔		海拔 1000m 以下										
震动	5.8m/S(0.6G)以下 10~60Hz(共振频率时不可连续使用)											

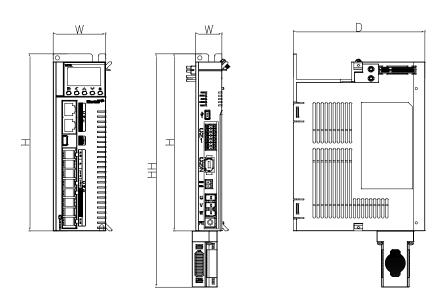

耐压	初级-FG 之间 AC1500V 一分钟	
控制方式	三相 PWM 变流器正弦波驱动	
编码器反馈	绝对值式 17bit、23bit	
数字量输入	7 个 DI(DC24V 光耦隔离)	
数字量输出	3 个 DO(DC24V 光耦隔离)	
动态制动(DB)	支持	
项目	EtherCAT 机型规格	
支持协议	EtherCAT协议	
支持服务	CoE(PDO、SDO)	
同步方式	DC_ synchronous	
双工方式	全双工	
波特率	100M bit/s	
物理层	100BASE-TX	
传输距离	2 节点距离不大于 100 米	
从站数量	实际组网使用时建议低于 128 台	
配置文件	ESI 或 XML	
PDO 数量	5组 TxPDO 数量,5组 Rx PDO 数量	
支持控制模式	轮廓位置模式(profile position mode) 轮廓速度模式(profile speed mode) 轮廓转矩模式(profile torque mode) 原点回零模式(homing mode) 周期同步位置模式(Cyclic synchronous position mode) 周期同步速度模式(Cyclic synchronous velocity mode) 周期同步转矩模式(Cyclic synchronous torque mode)	
USB 通信	PC 通信使用「HCS-Studio」后台软件	
通讯网口	标准 8Pin RJ45 网口 2 个	
支持同步周期时间	500us, 1ms, 2ms, 4ms	
STO 安全转矩切断	J3FB 系列机型支持	
项目	CANopen 机型规格	
支持协议	CANopen 协议	
帧类型 标准帧,包含 8 个字节数据和 11 位标识符		
NMT	从设备	
PDO 传输类型	支持事件触发,时间触发,同步周期,同步非周期	
PDO 数量	TxPDO 数量 4 组,RxPDO 数量 4 组	
紧急服务对象	支持	
节点保护/心跳保护	支持,但不能同时使用	
EDS 文件	有	


终端电阻	120 欧姆
波特率	20K bit/s, 50K bit/s, 100Kbit/s, 125K bit/s, 250Kbit/s,
	500Kbit/s(默认),800Kbit/s,1Mbit/s
	轮廓位置模式(profile position mode)
	原点回零模式(homing mode)
支持控制模式	插补位置模式(Interpolated Position Mode)
	轮廓速度模式(profile speed mode)
	轮廓转矩模式(profile torque mode)
从站数量	建议不超过 64 台
USB 通信	PC 通信使用「Servostudio」后台软件
RS485 通讯	支持
通讯网口	标准 RJ45 8Pin 网口 2 个


1.1.4 过载检出特性

J3EB 系列驱动器,电机驱动转矩超过下图过载检出特性中表示的转矩值时,保护机制启动,输出过载异常报警,电机将紧急停止。

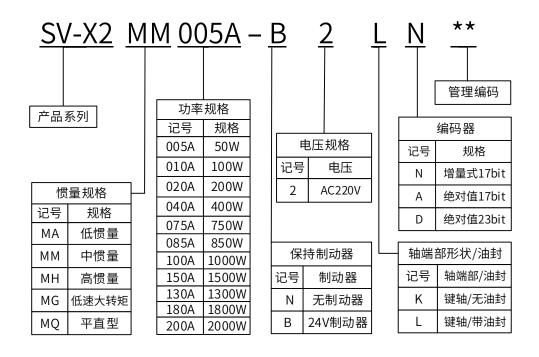




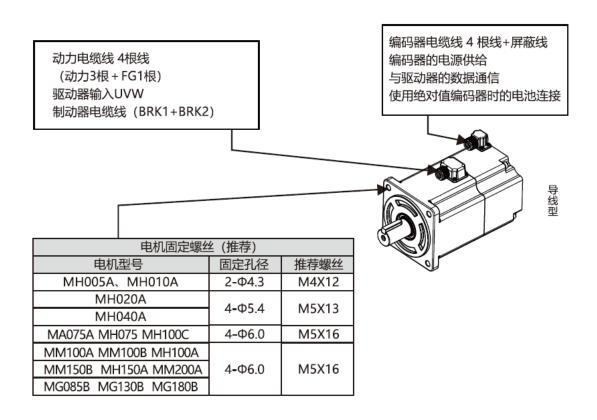
1.1.5 外形尺寸

10 00 14 ±11	T-1 = 700		壬 旱(,,,,)			
机器类型	功率	W(mm)	H(mm)	D(mm)	重量(kg)	
**** ** —	5KW	75	176	130	1.5	
整流单元	4KW	52	176	130	1.2	
J3R□	3KW	52	176	130	1	
驱动器	2.5KW	52	176	130	0.7	
J3E□	100W~1KW	26	176	130	0.3	

70 00 At mil	T-L = 700	外开	手 目(1)		
机器类型	功率	W(mm)	HH(mm)	D(mm)	重量(kg)
驱动器	2.5KW	52	232	130	0.7
J3F□	100W~1KW	26	232	130	0.3


1.2 关于电机

1.2.1 电机型号


电机铭牌

电机型号

1.2.2 电机各部分名称

1.2.3 电机基本规格

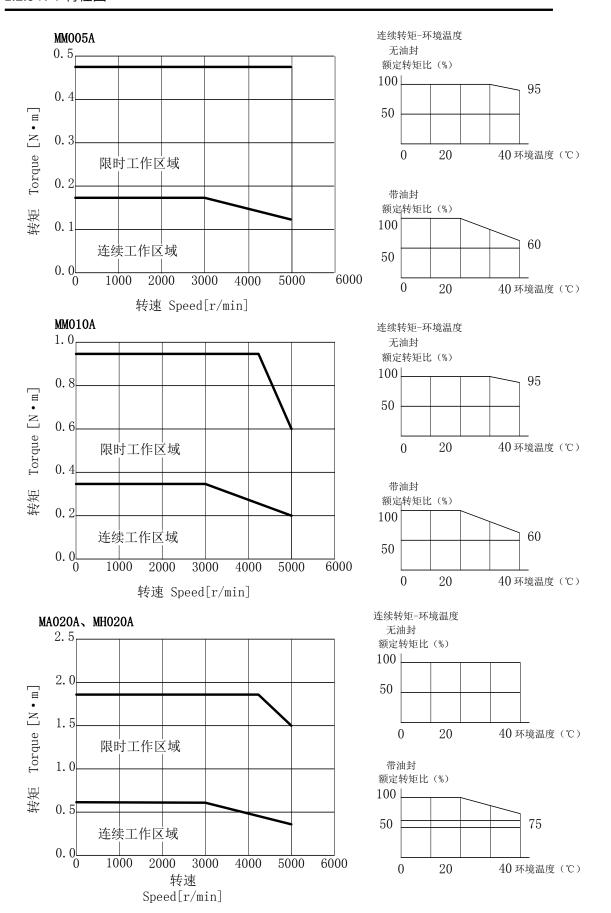
		AC200V~240V								
				AC200V~	24UV					
	项目		单位			规	格			
	电压		V		DC280V					
	电机型号			MH005A	MH010A	MA020A	MH020A	MA040A	MH040A	
	(SV-X2	-***)	-	高惯量	高惯量	低惯量	高惯量	低惯量	高惯量	
	安装法兰盘尺寸		mm	4	0		6	60		
	质量	无制动器	lea	0.33	0.45	0.9	0.87	1.28	1.22	
	灰里	带制动器	kg	0.55	0.66	1.3	1.27	1.67	1.61	
	额定输出项	力率	W	50	100	200	200	400	400	
	额定转知	Ē	N.m	0.16	0.32	0.64	0.64	1.27	1.27	
	瞬时最大车	表矩	N.m	0.56	1.11	1.91	2.23	3.82	4.46	
	额定电流		Arms	1.1	1.1	1.7	1.4	2.7	2.1	
	瞬时最大电流		Arms	5.5	5.5	6.5	6.9	10.2	10.4	
	额定转道	<u>東</u>	rmp	3000						
基	最高转過	東	rmp	6000 5000						
本	转矩常数	<u></u> 数	N.m/ Arms	0.168	0.327	0.427	0.5	0.488	0.67	
规	每相感应电压	玉常数	mV/(r/min)	5	10.43	14.5	14.61	17.8	20.85	
格	***	无制动器	1.14//-	6.7	14.4	28.9	14.1	60	28.8	
	额定功率变化率	带制动器	kW/s	6.1	13.8	23.8	13.2	54	27.8	
	+n ++ n+>= >+5**	无制动器		2.8	2.17	0.728	1.39	0.499	1.3	
	机械时间常数	带制动器	ms	3.09	2.26	0.848	1.49	0.554	1.35	
	电气时间常	常数	ms	1.12	1.32	6.17	3.9	6.36	4.21	
	+ 10 tt 7 14 E	无制动器	4074 7	0.038	0.071	0.16	0.29	0.28	0.56	
	电机转子惯量	带制动器	10 ⁻⁴ kg. <i>m</i> ²	0.042	0.074	0.17	0.31	0.29	0.58	

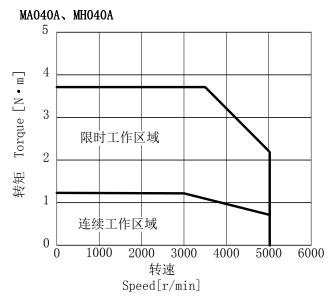
	容许负载	径向负载	N	68	68	245	245	245	245		
	谷叶贝轼	轴向负载	IN	58	58	98	98	98	98		
	编码器	:	17bit 串行通证	bit 串行通讯(EIA422)							
	用途		保持用制动器	保持用制动器 (注意: 不是用来制动鼓)							
生山	电源		-		由于是 SELV	/ 电源/危险电	压请使用强值	化绝缘的电源			
制动	额定电压	<u> </u>	V		DC24V±10%						
	额定电流		А	0.25	0.3	0.36					
器											
格	吸合时间	3	ms	35 L)	大下		50 L	以上			
释放时间 ms 20 以下											
	释放电压	<u> </u>	V DC1V以上								
	额定时间	3	连续								
	使用环境》	温度	0°C∼40°C(5	0°C~40°C(无结露)							
	使用环境》	显度	20~85%RH(无结露)								
	保存环境》	温度	-20°C~65°C (无结露) 最高温度: 80°C72 小时								
使	保存环境法	虚度	20~85%RH	(无结露)							
用	使用保存된	不境	屋内(不接触	直射阳光)、	无腐蚀性气体	本・无易燃性	气体・无油性	生物・无灰尘			
环	耐热等组	及	Class B								
境	绝缘电阻	<u> </u>	DC1000V-5M	Ω以上							
条	绝缘耐压	₹	AC1500V1分	钟							
件	使用海拔	发	海拔 1000m 以	以下							
	振动等组	及	V15 (JEC2121	L)							
	耐振动		49m/s ² (5G)								
	耐冲击		98m/s ² (10G)							
	保护构造 IP65/(IP67 可以对应)										
注		安照规定接地,适用 Class l									
	・适用过电压范围Ⅱ「Overvoltage categoryⅡ」										
事	・适用污染度 2 「Pollution degree 2」										
项	・额定扭矩是指安装在按电机法兰盘尺寸的约 2 倍大下的 L 型钢上的条件下所显示的值										
,	•制动器连接线分	极性。红导线	: 与+24V 连接	黑导线: 与(GND 连接。						

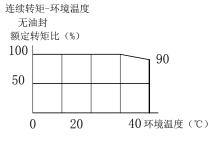
				AC200V~	240V						
	项目		单位			规	格				
	电压		V		DC280V						
	电机型号			MA075A	MH075A	MH100C	MM100A	MM100B	MH100A		
	(SV-X2	-***)	=	低惯量	高惯量	高惯量	中惯量	中惯量	高惯量		
	安装法兰盘尺寸		mm	8	0		1:	30			
	质量	无制动器	kσ	2.25	2.25	2.68	4.67	/	6.29		
	灰里	带制动器	kg	3.01	3.01	3.45	6.27	/	7.89		
	额定输出项	力率	W	750	750	1000	1000	1000	1000		
	额定转知	Ē	N.m	2.39	2.39	3.185	4.77	4.77	4.77		
	瞬时最大转矩		N.m	7.16	8.36	11.13	14.3	14.31	14.5		
	额定电流		Arms	4.2	3.8	5.7	5.2	8.25	5.2		
	瞬时最大电流		Arms	17.4	18.8	30	15.6	25	15.6		
+	额定转迹	束	rmp		3000			2000			
基本	最高转過	束	rmp		4500		3000	5000	3000		
规	转矩常数		N.m/ Arms	0.583	0.648	0.552	0.918	0.573	0.918		
格	每相感应电压	玉常数	mV/(r/min)	21.33	22.65	21.2	33.65	21.2	33.65		
伯	施宁社委亦小李	无制动器	LAM/a	59.4	36.6	44.7	36.9	56	9.96		
	额定功率变化率	带制动器	kW/s	53.8	34.4	42.8	30.8	49.3	9.46		
	扣标可问贷款	无制动器		0.518	1.26	1.19	1.76	1.31	6.52		
	机械时间常数	带制动器	ms	0.572	1.34	1.24	2.11	1.48	6.86		
	电气时间常	常数	ms	11.4	6.54	4.72	9.5	12.53	9.5		
	电机转子惯量	无制动器	10 ⁻⁴ kg. <i>m</i> ²	0.96	1.56	2	6.18	9.16	22.9		

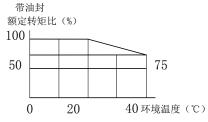
		带制动器		1.07	1.66	2.1	7.4	10.4	24.1			
	容许负载	径向负载	N	392	392	392	49	490	490			
	谷叶贝轼	轴向负载	IN	147	147	147	196	196	196			
	编码器	+	17bit 串行通证	17bit 串行通讯(EIA422)								
	用途		保持用制动器	(注意: 不是] 用来制动鼓)						
#-II	电源		-	由于是 SELV 电源/危险电压请使用强化绝缘的电源								
制动	额定电压	₹	V			DC24V	′±10%					
器	额定电流		Α		0.42			0.9				
规	静摩擦转	矩	N.m	3.8 以上			14 以上					
格	吸合时间	■	ms		70 以下			100 以上				
释放时间 ms 20 以下								60 以下				
	释放电压	<u> </u>	V			DC1\	/ 以上					
	额定时间 连续											
	使用环境》	且度	0°C∼40°C(5	C~40°C(无结露)								
	使用环境法	显度	20~85%RH	(无结露)								
	保存环境》	温度	-20℃~65℃(无结露) 最高温度: 80℃72 小时									
使	保存环境法	字环境湿度 20~85%RH(无结露)										
用	使用保存班	不境	屋内(不接触	直射阳光)、	无腐蚀性气体	k 、无易燃性	气体、无油性	生物、无灰尘				
环	耐热等组	及	Class B									
境	绝缘电阻	且	DC1000V-5M	门以上								
条	绝缘耐压	₹	AC1500V1分	钟								
件	使用海拉	发	海拔 1000m 以	以下								
	振动等组	及	V15 (JEC2121	.)								
	耐振动	1	49m/s ² (5G)									
	耐冲击		98m/s ² (10G)								
	保护构造	告	IP65/ (IP67 F	可以对应)								
注	• 按照规定接地,	适用 Class I	适用 Class I									
意	• 适用过电压范围	II 「Overvol	tage category l	IJ								
事	・适用污染度 2 「Pollution degree 2」											
项	• 额定扭矩是指安装在按电机法兰盘尺寸的约 2 倍大下的 L 型钢上的条件下所显示的值											
-74	•制动器连接线分	极性。红导线	k: 与+24V 连接	黑导线:与	GND 连接。							

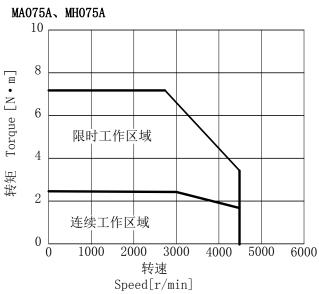
				AC	200V~240V					
	项目	1	单位				规格			
	电压	E	V	DC280V						
	电机型	[] [] 등		MM150B	MH150A	MM200A	MG085A	MG130A	MG180A	
(5	SV-X2□□□]****)	-	中惯量	高惯量	高惯量	低速大转矩	低速大转矩	低速大转矩	
	安装法兰	盘尺寸	mm	150	130	130	130	130	130	
	质量	无制动器	ka	/	7.37	6.98	4.67	5.87	6.98	
	灰里	带制动器	kg	/	8.97	8.58	6.27	7.47	8.58	
	额定	渝出功率	W	1500	1500	2000	850	1300	1800	
	额定转矩		N.m	7.16	7.16	9.55	5.41	8.28	11.5	
	瞬时最大转矩		N.m	21.5	21.5	28.6	14.3	23.3	28.6	
	额定电流		Arms	9.5	8	9.9	5.9	9.3	11.8	
	瞬时	最大电流	Arms	29	24	30	15.6	24	30	
基	额别	定转速	rmp		2000		1500			
本	最高	高转速	rmp	5000			3000			
规	转	 电常数	N.m/ Arms	0.672	0.895	0.9645	0.918	0.895	0.9645	
格	每相感原	並电压常数	mV/(r/min)	25.9	34.84	37.95	33.65	34.84	40.18	
	额定功	无制动器		75.4	15.4	75.4	47.4	74.8	109	
	率变化 率	带制动器	kW/s	68.6	14.8	68.6	39.6	75.9	98.7	
	机械时	无制动器		3.16	5.15	1.24	1.76	1.41	0.91	
	间常数	带制动器	ms	3.47	5.35	1.37	2.11	1.6	1	

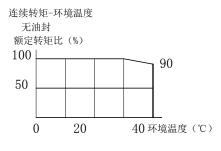

	电气	时间常数	ms	14.3	12.7	13.88	9.5	12.7	13.88		
	电机转	无制动器	4074 7	12.1	33.4	12.1	6.18	9.16	12.1		
	子惯量	带制动器	10 ⁻⁴ kg.m ²	13.3	34.6	13.3	7.4	10.4	13.3		
	容许负	径向负载		490	490	490	490	490	490		
	载	轴向负载	N	196	196	196	196	196	196		
	编	码器	17bit 串行通证	∄ (EIA422)							
	j	用途	保持用制动器	(注意: 不是	用来制动鼓)					
#u	E	电源	-		由于是 SE	LV 电源/危险	电压请使用强化	L绝缘的电源			
制动	额	定电压	V	DC24V±10%							
器	额	定电流	Α		0.42			0.9			
规	静摩	擦转矩	N.m		3.8 以上			14 以上			
格	吸1	合时间	ms		70 以下	下 100以上					
""	释加	放时间	ms		20 以下		60 以下				
	释放电压 V DC1V 以上										
	额流	定时间	连续								
	使用理	使用环境温度 0℃~40℃(无结露)									
	使用理	使用环境湿度 20~85%RH(无结露)									
	保存理	保存环境温度 -20°C~65°C(无结露) 最高温度: 80°C72 小时									
使	保存理	不境湿度	20~85%RH	(无结露)							
用	使用1	保存环境		直射阳光)、	无腐蚀性气体	、无易燃性气	(体、无油性物	、无灰尘			
环	耐	热等级	Class B								
境	绝绝	缘电阻	DC1000V-5M	Ω以上							
条		缘耐压	AC1500V1分								
件		用海拔	海拔 1000m l								
	振	动等级	V15 (JEC2121	_)							
		振动	49m/s ² (5G)								
	而		98m/s ² (10G)							
	保持	护构造	IP65/ (IP67 ī	可以对应)							
注	・按照规定	定接地,适用(Class I								
	・适用过电压范围Ⅱ「Overvoltage categoryⅡ」										
事	・适用污染度2「Pollution degree2」										
项		・额定扭矩是指安装在按电机法兰盘尺寸的约 2 倍大下的 L 型钢上的条件下所显示的值									
	・制动器连接线分极性。红导线:与+24V 连接 黑导线:与 GND 连接。										

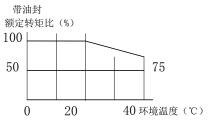

1.2.4 输出轴容许负载

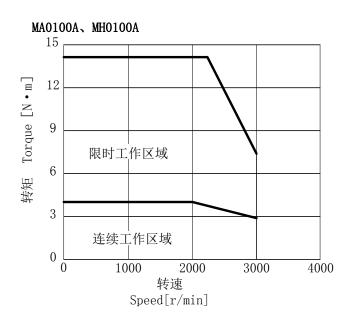

容许负载	单位	50W	100W	200W	400W	750W	1kW
径向方向	N	68.6	68.6	245	245	392	392
轴向方向	N	58.8	58.8	98	98	147	147

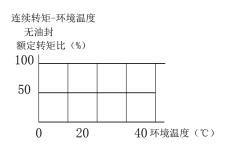

容许负载	单位	1.5kW	2kW	850W	1.3kW	1.8kW
径向方向	N	490	490	490	490	490
轴向方向	N	196	196	196	196	196

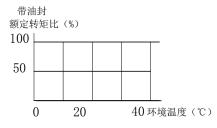

1.2.5 N-T 特性图

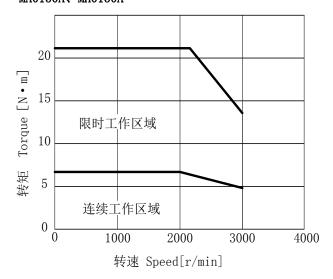


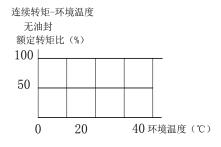


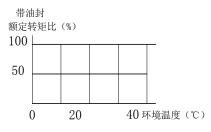


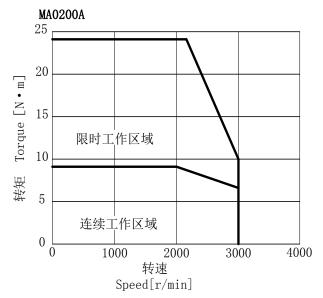


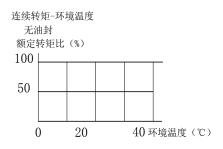


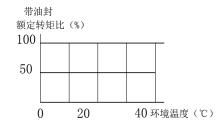


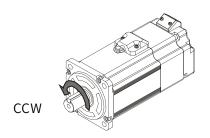







MA0150A、MH0150A



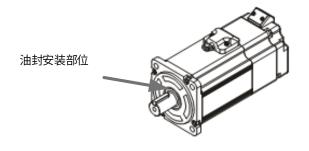


1.2.6 编码器规格

项目		内	容	备注
电机机种名	SV]	SV	_
电源电压 VCC		DC4.5V	′∼5.5V	波动 5%以下
外部电源 BAT			DC2.4V~5.5V	_
外部电容器 CAP			DC2.4V~5.5V	_
电源电压 VCC 消耗电流		Typ 16	60mA	不包含突入电
外部电源 BAT 消耗电流	_		Тур 10μΑ	电机室温停止状态电 池电压 3.6V
1 圏回转分解能	绝对值	131,0	72 (17bit)	_
多圈回转计数量	无		_	
最大旋转速度		6,000 r/min		_
输出输入形态		差分	传送	_
上计数方向(注1)		CCW	方向	_

转送方式	半双工非同期串行通信	
通信速度	2.5Mbps	
工作温度	0~85°C	
外部干扰磁场	±2mT (20G)以下	

注 1) 上计数方向


※从法兰盘正面看时, 轴逆时钟方向回转,即CCW。

【注意】

- ※ 电机回转在 180 度以下使用时,1 圈回转精度恶化。
- ※ 带制动器电机,请遵守制动器电压指定。
- ※ 制动器电压为未满 12V 以及逆极性状态下使用时, 1 圈回转精度恶化。

1.2.7 关于油封

与减速机等组合使用时,油有可能通过输出轴渗入电机内部时,请使用油封防止油渗入。 SV-X2 系列的电机,全机型均设置了安装油封的部位。需要油封时,请在订购 SV-X2 伺服 电机时,请注明附带有油封的产品。

1.2.8 电机尺寸

参阅画册《伺服样本》

1.3 再生电阻及空开选型

■ 再生电阻**选型**

整流单元端子 P、PB 外接再生电阻,各功率机型相应制动电阻选型如下:

整流单元	电源输入	最大输出电流 Max	再生电阻功率	再生电阻阻值
3KW	单相 220V	22.4A	≥400W	≥20Ω
	三相 220V	35.4A	≥700W	≥20Ω
4KW	单相 220V	30.0A	≥500W	≥20Ω
	三相 220V	52.0A	≥1KW	≥20Ω
5KW	单相 220V	35.5A	≥700W	≥20Ω
	三相 220V	51.1A	≥1KW	≥20Ω

使用外置再生电阻,发热温度过高时,请增大电阻值、增大再生容许功率。

■ 空开选型

控制电 L1C/L2C	空开规格 6A	_	_
	空开选型	输入电流	驱动器总电流
	16A	9.96A	15A
	20A	12.6A	20A
ナロのセニャル	25A	14.8A	25A
主回路接三相输入 AC1/AC2/AC3	25A	16.6A	30A
	32A	18.8A	35A
	32A	21.1A	40A
	40A	22.5A	45A
	40A	24.7A	50A
主回路接单相输入 AC1/AC2	32A	19A	15A
	40A	22.7A	20A
	40A	27A	25A
	50A	32A	30A
	63A	35.75A	35A

1.4 驱动器和电机配套选型

驱动器电源输入等级	容量	伺服电机型号		电机框号 法兰尺寸 (mm)	驱动器型号
	50W	高惯量	MH005A		
	100W	高惯量	MH010A	40	SV-J3□□010A-A
		平直型	MQ010A		
		低惯量	MA020A		
	200W	高惯量	MH020A	60	
		平直型	MQ020A		CV 12□□040A A
		低惯量	MA040A		SV-J3□□040A-A
	400W	高惯量	MH040A	60	
		平直型	MQ040A		
	750W	低惯量	MA075A	00	SV-J3□□100A-A
2201		高惯量	MH075A	80	
220V	1KW	高惯量	MH100C	80	
		中惯量	MM100A	120	
		高惯量	MH100A	130	
	1.5KW	中惯量	MM150A		
		高惯量	MH150A		
	2KW	中惯量	MM200A		
	850W	低速大转矩	MG085A	130	SV-J3□□250A-A
		低速大转矩	MG085B		
	1.3KW	低速大转矩	MG130A		
		低速大转矩	MG130B		
	1.8KW	低速大转矩	MG180A		

1.5 外围电缆及连接器配件选型

(1) 电压输入等级 220V: 750W 以下

明细	用途	成品名称	备注
1	驱动器与电机动力	PWR-CON 750W	
		连接线-CAB-PWR75A-0.5M	长度: 0.5米
		连接线-CAB-PWR75A-1.5M	长度: 1.5米
2	驱动器与电机动力	连接线-CAB-PWR75A-3M	长度:3米
	连接线	连接线-CAB-PWR75A-5M	长度:5米
		连接线-CAB-PWR75A-10M	长度: 10米
3	编码线端子	ENC-TE 750W	
		连接线-SVCAB-ENC75A-0.5M	长度: 0.5米
		连接线-SVCAB-ENC75A-1.5M	长度: 1.5米
4	普通编码线	连接线-SVCAB-ENC75A-3M	长度: 3米
		连接线-SVCAB-ENC75A-5M	长度:5米
		连接线-SVCAB-ENC75A-10M	长度: 10米
5	绝对值编码线	连接线-SVBOX-ENCABS+	
		连接线-SVCAB-ENC75A-3M	

(2) 电压输入等级 220V: 1KW~2.5KW

明细	用途	成品名称	备注
1	驱动器与电机动力	PWR-CON 1KW	
		连接线-CAB-PWR100A-0.5M	长度: 0.5米
		连接线-CAB-PWR100A-1.5M	长度: 1.5米
2	驱动器与电机动力	连接线-CAB-PWR100A-3M	长度: 3米
	连接线	连接线-CAB-PWR100A-5M	长度:5米
		连接线-CAB-PWR100A-10M	长度: 10米
3	刹车连接器	PWB-CON 1KW	
4	编码线端子	ENC-TE 1KW	
		连接线-CAB-ENC100A-0.5M	长度: 0.5米
		连接线-CAB-ENC100A-1.5M	长度: 1.5米
5	普通编码线	连接线-CAB-ENC100A-3M	长度:3米
		连接线-CAB-ENC100A-5M	长度:5米
		连接线-CAB-ENC100A-10M	长度: 10米
		连接线-CAB-ENC100A-ABS-0.5M	长度: 0.5米
		连接线-CAB-ENC100A-ABS-1.5M	长度: 1.5米
6	绝对值编码线	连接线-CAB-ENC100A-ABS-3M	长度: 3米
		连接线-CAB-ENC100A-ABS-5M	长度:5米
		连接线-CAB-ENC100A-ABS-10M	长度: 10米

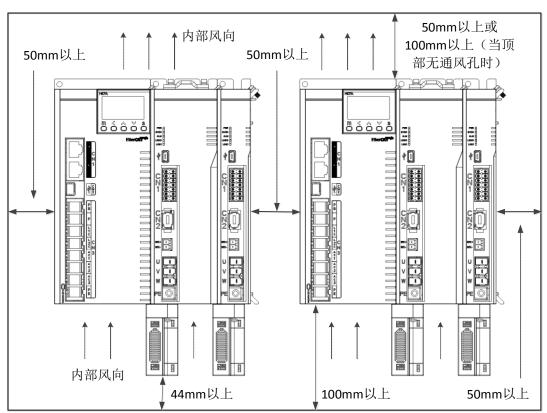
1.6 驱动器和电机的安装

1.61 安装环境条件

关于环境条件,请务必遵守本公司规定的指标。需要在规定环境条件范围外使用时,请事先向本公司咨询。

- ① 设置在不会被日光直接照射到的场所。
- ② 驱动器务必设置在控制箱内。
- ③ 设置在不会被水,油(切削油,油雾)浸没,没有潮气的地方。
- ④ 远离易爆易燃气体,硫化气体,氯化气体,氨等有酸/碱以及盐等腐蚀性氛围。
- ⑤ 不会被粉尘,铁粉,切削粉等侵扰的地方。
- ⑥ 远离高温场所,连续振动及过度冲击的地方。

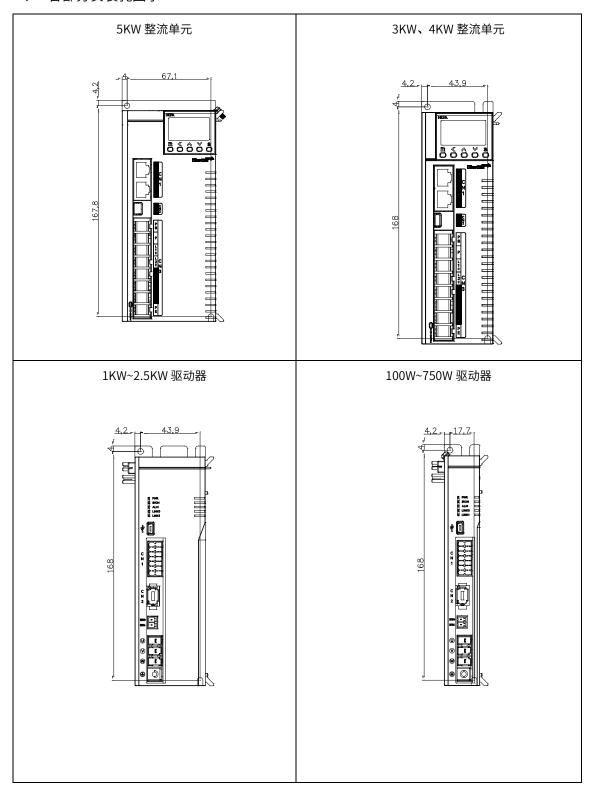
1.6.2 防尘·防水


驱动器非防水结构,电机的保护结构除了轴输出部分和连接器部分符合 IEC34-5(国际电气标准协会)IP65 标准。

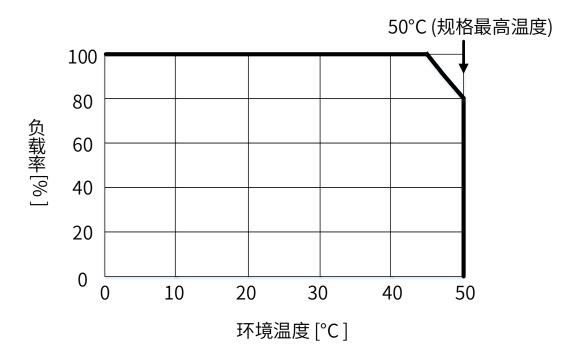
1.6.3 安装方法与空间

◆ 撞击,负重

- ① 电机能承受的撞击在 200m/s2(20G)以下。在运送,安装,拆卸电机时,不要施加 过大的撞击和负重。 搬运时不可以持编码器部分、电缆部分、连接器部分。
- ② 从电机轴上拆卸皮带轮,连轴器时必须使用拉爪器。
- ◆ 与机械系统的结合
- ① 使用说明书的电机规格记载了电机轴的容许负荷值,超出容许负荷值会导致电机内部轴承寿命缩短及电机轴的损伤。请使用能够充分吸收偏心偏角负荷的连轴器。
- ② 组装马达时,编码器电缆上不要有超过 6kgf 以上的压力。
- ③ 动力电缆和编码器电缆弯曲半径在 R20mm 以上。
- ◆ 驱动器安装方向和间隔


对驱动器进行设置时,为了保证保护箱内或控制箱内的散热和热对流,周围需要留出充分的空间。如下图所示:

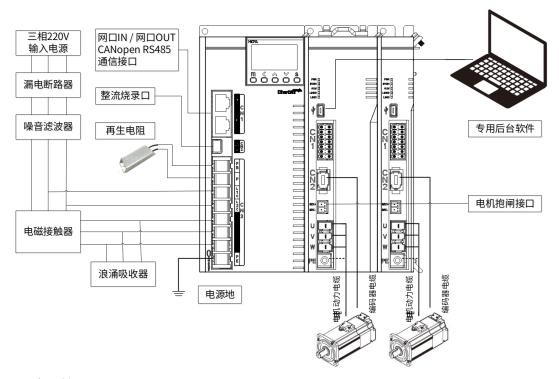
驱动器的安装间隔示意图


伺服器控制柜的风道要设计合理,需在控制柜中加装风扇,进风口要设置防尘网,排风通畅,避免在柜中形成涡流。需保证伺服器安装处的通风量大于 1.5 倍的风扇风量。(注:每个风扇风量为 6.62CFM)。否则有可能导致报警机器温度过高!

◆ 各部分安装孔图示

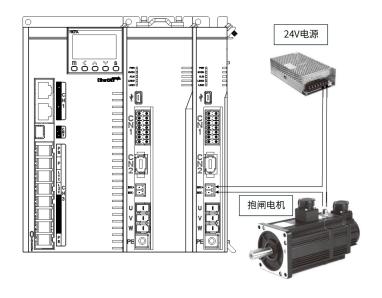
- ·驱动器按垂直方向安装,安装时请各使用 2 个 M4 螺丝固定。多轴安装需保证每轴都锁紧安装螺丝。
- •安装到控制箱等密封的箱体内时,为了确保内部各基板周围温度不超过 45℃,需要安装 风扇或冷却器 进行降温。
- ·散热板的表面会比周围温度高出 30℃以上。
- 配线材料请选用耐热材料,并与容易受到温度影响的机器和配线隔离。
- •伺服驱动器的寿命取决于内部电解电容器周围的温度。电解电容器接近使用寿命时,会 出现静电容量降低和内部电阻增大现象。由于上述原因,请注意会引起过电压报警,噪 音 引起的误动作、各元件损坏。电解电容器的寿命在「年平均 30℃、负荷率 80%、1 日 平 均 20 小时以下运行」的条件下约为 5~6 年。

◆ 驱动器的环境温度效率


2

2 电机驱动器配线说明

- ◆2.1 系统配线图
- ◆2.2 电机连接器端口说明
- ◆2.3 驱动器连接器端口说明
- ◆ 2.4 端口 CN2 使用说明
- ◆ 2.5 端口 CN4、CN5 使用说明
- ◆2.6 端口 CN6 用户控制端子使用说明
- ◆2.7 用户 I/0 配线说明


2.1 系统配线图

伺服电机和伺服驱动器连接说明

- ※ 电源输入 AC220V
- ※ 控制电源输入(L1C、L2C)和主回路电源输入(AC1、AC2、AC3)请从同一AC220V 主电源配线。
- ※ 编码器电缆长度 20m 以下。

■ 抱闸接线图

表 2.1.1 伺服驱动器和伺服电机连接说明

项目	说明			
7.10	为了配合欧洲 EC 标准,在选定适用各规格的机器的基础上,依照			
周围机器构成	「图 4.1.1 系统配线图」进行设置。			
设置环境	驱动器为 IEC60664-1 规定的污染度 2 或污染度 1 的环境中进行设置。			
电源 1: AC200~230V (主回路和控制回路电源)	本公司产品于 IEC60664-1 所规定的,过电压范畴 II 的电源环境下使用。			
电源 2: DC24V I/O 电源 电机制动器解除电源	选定 DC24V 外部电源的规格需满足以下条件。 使用 SELV 电源(※) ,容量为 150W 以下。这个是 CE 对应时的条件。 ※SELV:safetyextralowvoltage (安全特別低电压/非危险电压、危险电压需强化绝缘)			
配线	电机动力电缆,AC200V输入电缆,FG电缆以及多轴构成时的主回路电源分配电缆,750W以下请使用AWG18/600V耐压线,1kW以上请使用AWG14/600V耐压线。			
漏电断路器	为了保护电源线,过电流流过时切断回路。 依照「图 4.1.1 系统配线图」,电源和噪音滤波器之间,务必使用 IEC 规 格以及 UL 认定的电路制动器。为符合 EMC 标准,请使用本公司推荐的 具有漏电检出功能的电路制动器。			
噪音滤波器	防止电源线的噪音干扰。 为了符合 EMC 标准,请使用本公司推荐的噪音滤波。			
电磁接触器	进行主电源的切替(ON/OFF)。请接上过电压保护器进行使用。			
浪涌吸收器	为了符合 EMC,请使用本公司推荐的过电压吸收器。			
信号线噪音滤波器 /铁氧体磁心	为了符合 EMC 标准,请使用本公司推荐的噪音滤波器。			
制动电阻	本产品中内部无制动电阻。 电源组件内部的平滑电容器不能充分吸收及处理再生电力时,需要在外边设置再生电阻。作为参考,确认设定面板再生放电状况,再生电压警告 ON 时,请使用再生电阻。再生电阻参考规格:请参照「外围制动电阻选型」。使用内置恒温器,并设置过热保护电路。			
接地	本公司产品由于适用 Class 1 的机器,具有保护设置。 本公司产品的接地,需使用保护接地端子,经过实施了 EMC 对策的保护箱 及电气箱进行实施保护接地端子部使用如下图的 FG 标志进行表示。			

2.2 电机连接器端口说明

电机连接器端子排列与配线色别

◆ 电源输入 AC220V (750W 以下)

电机连接器和插针排列(50~750W)

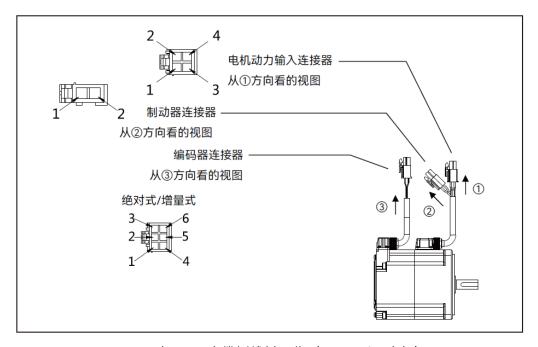


表 2.2.1 电缆侧线材一览(750W 以下电机)

名称	线材
电机动力输入	AWG18
制动器[*1]	AWG22
编码器(增量式)	电源: AWG22
编码器(绝对式)	信号: AWG24

注1: 附有制动器的电机的场合

表 2.2.1 750W 以下的场合

名称	端子号码	信号名	内容	配线色别
电机动力线	1	U	电机动力 U 相输出	红
	2	V	电机动力 V 相输出	白
	3	W	电机动力 W 相输出	黑
	4	FG	电机外壳接地	黄绿
制动器[*1]	1	BRK+	制动器电源 DC24V	蓝(褐)
	2	BRK-	制动器电源 GND	黄(橙点)

	1	BAT+	编码器电源+	黄(红点)
	2	+D	串行通讯数据+	白(红点)
编码器	3	-D	串行通讯数据-	白(黑点)
(增量式/绝对式)	4	VCC	编码器电源 5V	橙黄(红点)
	5	GND	信号接地	橙黄(黑点)
	6	SHIELD	屏蔽线	黑

注1: 附有制动器的电机的场合

◆ 电源输入 AC220V(1KW~2.5KW)

电机连接器和插针排列

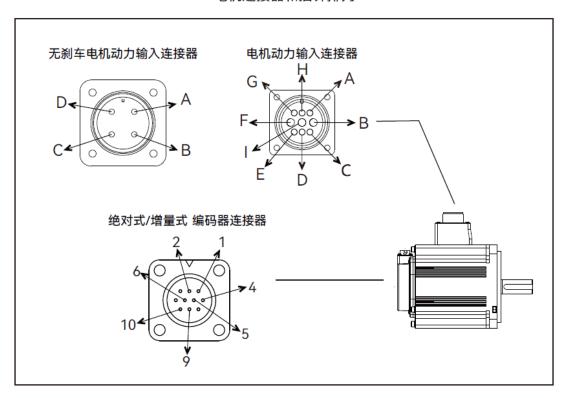
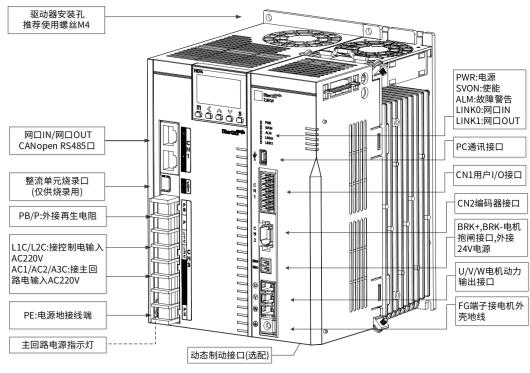


表 2.2.2 电缆侧线材一览(750W 以下电机)

名称	线材
电机动力输入	AWG19
制动器[*1]	AWG21
编码器(增量式)	ANNCOA
编码器(绝对式)	AWG24

注1: 附有制动器的电机的场合

表 2.2.1 750W 以下的场合

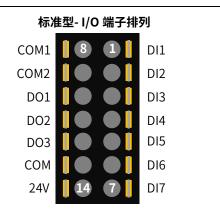

名称	端子号码	信号名	内容	备注
	1	U	电机动力 U 相输出	
	2	V	电机动力 V 相输出	
电机动力线	3	W	电机动力 W 相输出	
	4	FG	电机外壳接地	
#u=+ == [* 1]	1	BRK+	制动器电源 DC24V	
制动器[*1]	2	BRK-	制动器电源 GND	
	1	VCC	编码器电源 5V	
	2	GND	信号接地	
	3		NC	
	4		NC	
编码器	5	+D	串行通讯数据+	
(增量式)	6	-D	串行通讯数据-	
	7		NC	
	8		NC	
	9		NC	
	10	SHIELD	屏蔽线	
	1	VCC	编码器电源 5V	
	2	GND	信号接地	
	3	CAP	外部电容器[*2]	
	4	BAT	外部电池[*3]	
编码器	5	+D	串行通讯数据+	
(绝对式)	6	-D	串行通讯数据-	
	7	IC	内部连接	
	8	IC	内部连接	
	9	GND	信号接地	
	10	SHIELD	屏蔽线	

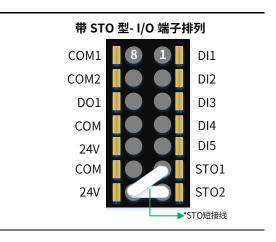
注1: 附有制动器的电机的场合

注 2: 外部电容器以及电池,以 GND 为基准电位

注 3: 内部连接(IC)已在内部连接在此不需要再和任何线连接

2.3 驱动器连接器端口说明

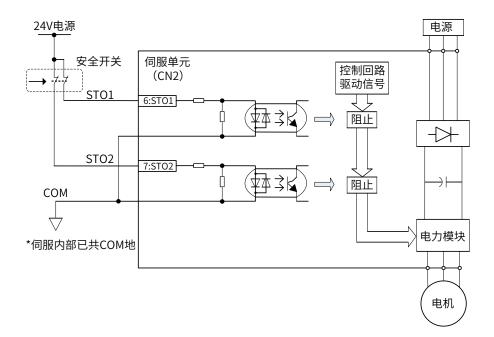



驱动器连接器端子说明

2.4 端口 CN1 使用说明

2.41 CN1用户I/O 端子说明

CN1 端子功能	引脚号	J3EB/J3EN 标准型端子信号	J3FB(带 STO 型) 端子信号
	1	DI1 数字量输入(伺服使能)	DI1 数字量输入(正向超程)
	2	DI2 数字量输入(报警复位)	DI2 数字量输入(负向超程)
	3	DI3 数字量输入(探针 1)	DI3 数字量输入(探针 1)
数字量输入	4	DI4 数字量输入(探针 2)	DI4 数字量输入(探针 2)
	5	DI5 数字量输入(原点)	DI5 数字量输入(原点)
	6	DI6 数字量输入(正向超程)	STO1(安全转矩切断)
	7	DI7 数字量输入(负向超程)	STO2(安全转矩切断)
公共端 1	8	COM1 数字量输入公共端	COM1 数字量输入公共端
公共端 2	9	COM2 数字量输出公共端	COM2 数字量输出公共端
	10	DO1 数字量输出(抱闸解除)	DO1 数字量输出(抱闸解除)
数字量输出	11	DO2 数字量输出(故障输出)	COM 地
	12	DO3 数字量输出	24V 电源
内部 24V 电源	13	COM 地	COM 地
内部 240 电源	14	24V 电源	24V 电源


注意

- ① 内部24V电源最大输出电流0.1A;
- ② 带电感成分的如继电器等负荷时,请连接(二极管)保护电路;
- ③ 根据不同的连接方式,输出管脚可输出高电平或者低电平,根据实际需求进行连线;
- ④ J3EB/J3EN标准机型有7个DI输入、3个DO输出。J3FB带STO机型有5个DI输入、1个DO输出,可通过功能码灵活配置DI/DO功能,DI/DO默认导通时有效,可修改正负逻辑
- ⑤ J3EB/J3FB机型支持探针功能,探针1固定使用DI3,探针2固定使用DI4;
- ⑥ J3FB系列如不使用安全功能时,请将STO1/STO2短接到24V即可,如上图STO短接线

2.42 STO 安全功能概要

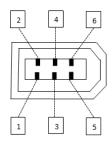
STO,即安全转矩切断。从安全输入信号通过硬件电路来强制关闭伺服功率晶体管的驱动信号,以此切断电机电流,关闭电机输出转矩。如果STO动作,伺服驱动器关闭准备输出信号(S-RDY),成为安全状态,此时驱动器面板显示"stoff"

J3FB 系列 STO 安全功能接线示意图

STO 功能说明:

STO1 开关	STO2 开关	伺服驱动器状态
闭合	闭合	ready
闭合	断开	stoff
断开	断开	stoff
断开	闭合	stoff

安全注意事项:

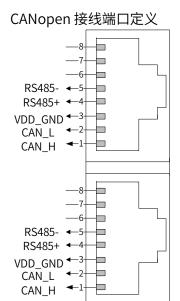

使用STO功能时,请确认是否满足系统的安全要求。STO功能动作时应考虑以下安全性:

- 1. 有外力作用时(如垂直轴), 电机会转动, 若需保持电机位置时, 则需采取外部制动器进行动作保持等措施。另外, 带制动器的电机的制动器为保持专用, 不可用于停止。
- 2. 如果无外力施加,且P04.54设定动态制动器无效时,电机会作自由停机, 此时停止距离 会变长。使用时请注意上述情况以免造成问题。
- 3. STO功能是断开电机的电源,但没有断伺服驱动器的电源,因此不进行电气绝缘。如 需对伺服驱动器或设备维护,请注意断开总电源。

2.5 端口 CN2 使用说明

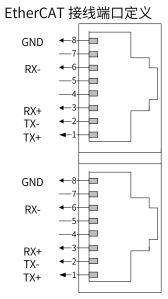
此端口用于驱动器和电机编码器连接,使用过程中,线缆与主电路配线需相距 30cm。

端口 CN2 引脚图:

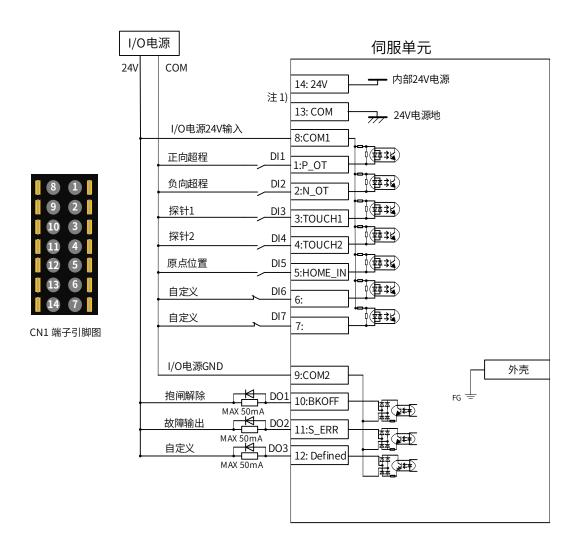

端口 CN2 引脚定义:

		1	VCC	编码器电源 5V 输出
	2	GND	信号接地	
		3	NC	_
编码器	编码器 CN2	4	NC	_
		5	+D	编码器信号:数据输入输出
		6	-D	编码器信号:数据输入输出
		_	FG	屏蔽线接在连接器外壳上

2.6 通讯网口说明


■ CANopen 网口定义:采用标准的 RJ45 接口 8 针网口,定义如图:

管脚	定义		
1	CAN_H		
2	CAN_L		
3	VDD-GND		
4	RS485+		
5	RS485-		
6	空		
7	空		
8	空		


■ EtherCAT 网口定义: 采用标准的 RJ45 接口的 8 针网口,定义如图:

管脚	定义	
1	TX+	
2	TX-	
3	RX+	
4	空	
5	绍	
6	RX-	
7	空	
8	GND	

2.7 用户 I/O 配线说明

J3EB 机型 I/O 端子接线示为例

注 1. 使用探针功能时,指定用 DI3 为探针 1,即 P04.03 默认值为 39(探针 1 功能码);指定用 DI4 为探针 2,即 P04.04 出厂值为 40(探针 2 功能码)

注 2. J3FB 机型 I/O 端子引脚 6 为 STO1、引脚 7 为 STO2,具体接线请参照 2.4 章节说明

3

3 调试

- ◆ 3.1 增益调整
- ◆ 3.2 自动增益调整
- ◆ 3.3 自适应滤波器
- ◆ 3.4 手动增益参数
- ◆ 3.5 惯量辨识和初始角度辨识

面板显示操作

■ 面板介绍

一体机面板位于整流单元,一套一体机只有一个控制面板。如下图所示:控制面板从左至右依次为 "MODE"、"SHIFT"、"UP"、"DOWN"、"SET"。整流单元的控制面板按照轮询的方式读取后边逆变单元的状态信息。

■ 面板操作说明

(1) 起始从机通讯台数设定

默认情况下从机起始的通讯台数为第一台(即挨着整流单元的逆变轴)P14.01=1。例如: 当需要整流单元从第三台从机起始轮询读时,设置 P14.01=3

- (2) 终止从机通讯台数设定整流单元作为主站轮询读逆变单元的信息,例如 P14.02 设 6, P14.01=2,则整流单元面板轮询显示从机第 2 轴到第 6 轴
- (3) 操作从机选定

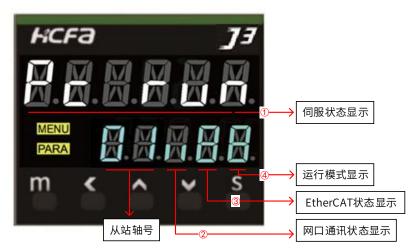
通过设置 P14.04 可选择面板操控从机站号,默认 P14.04=1,即面板默认操控从机站号 1 的逆变轴,当选定从机站号后除 P14 组参数外其余参数设置方式同 X3E 系列伺服驱动器。例如:设置 P14.04=3,可通过面板设置从机 3 的参数

(4) 主电缺相

一体机主电源默认为三相交流输入,可支持单相输入;当单相电源输入时,设置参数 P14.14 右起第一位为 1,例如 P14.14=HX0201,如下:

■ CANopen 驱动器面板显示

如图,面板显示主要分为3部分,分别代表不同意义,详情参见下表:



CANopen 的伺服驱动器面板显示说明

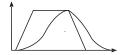
名称	意义	内容
1: 伺服状态显示	显示伺服的状态	no rdy: 伺服未准备好ok rdy: 伺服准备好Pc run: 接通电机AL.XXX: 伺服警告Err. XXX: 伺服报警
2: CANopen 节点状态 显示	显示 CANopen 节点状态,正常时候的上电直到运行时节点状态变化顺序是: 0-2-7F-5	0: 初始化 1: 断开 2: 已连接/已就绪 4: 停止 5: 可操作 7F: 预操作
3: 运行模式显示	显示伺服的运行模式	0: 无运行模式 1: 轮廓位置模式 (PP) 3: 轮廓速度模式 (PV) 4: 轮廓转矩模式 (PT) 6: 回原模式 (HM) 7: 位置插补模式 (IP)

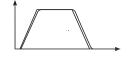
■ EtherCAT 驱动器面板显示

如图,面板显示主要分为4部分,分别代表不同意义,详情参见下表:

EtherCAT 的伺服驱动器面板显示说明

	1 35/1/ Mrs/1		
名称	意义	内容	
		no rdy: 伺服未准备好	
		ok rdy: 伺服准备好	
1: 伺服状态显示	 显示伺服的状态	Pc run: 伺服使能	
1. 167以以以对下7人		AL XX: 伺服警告	
		Err XX: 伺服报警	
		无显示: 无网口接通	
	 显示 2 个通讯网口物理接	1: IN 网口接通	
2: 网口通讯状态显示	通状态	1: OUT 网口接通	
	进 (人)(3)	11: IN 和 OUT 网口都接通	
	┃ ┃显示 EtherCAT 的网络状	1:网络初始化(init)	
	│ 並亦 EtherCAT 的网络状 │ 态,正常时候的上电顺序	2:网络预运行(Pre-op)	
3:EtherCAT 状态显示	恋,正书时候的工电顺序 应该是: 1-2-4-8	4:网络安全运行(Safe-op)	
	应以定。1-2-4-0 	8: 网络运行(Op)	
		0:无运行模式	
		1:轮廓位置模式(pp)	
		3:轮廓速度模式(pv)	
4: 法行掛式目子	 見子伺服的法行模式	4:轮廓转矩模式(pt)	
4:运行模式显示	显示伺服的运行模式 	6:回原模式(hm)	
		8:同步周期位置模式(csp)	
		9:同步周期速度模式(csv)	
		A: 同步周期转矩模式(cst)	


3.1 调整


总体说明

◆ 目的:

伺服驱动器需要稳定、快速、准确的驱动电机,让电机忠实的跟踪位置、速度或转矩 指令而尽可能没有延迟的工作。为了达到这一要求,必须要对伺服驱动器控制环路的 增益进行调整。

下面举例说明:

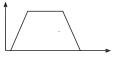


图 3.1 增益设定举例

增益设定等级: 低 位置环增益: 20.0 1/s 速度环增益: 50.0HZ

速度环积分时间: 50.0

速度前馈: 0 惯量比: 1.00 增益设定等级: 高 位置环增益: 100.0 1/s 速度环增益: 50.0HZ 速度环积分时间: 50.0

速度前馈: 0 惯量比: 1.00 增益设定等级:高+前馈位置环增益:100.01/s 速度环增益:50.0HZ 速度环积分时间:50.0

速度前馈: 50.0 惯量比: 1.00

流程:

在对电机进行试运行确认驱动器和电机匹配无误后,就可以通过增益调整调试伺服系统控制性能,增益调整的一般流程如下图所示:

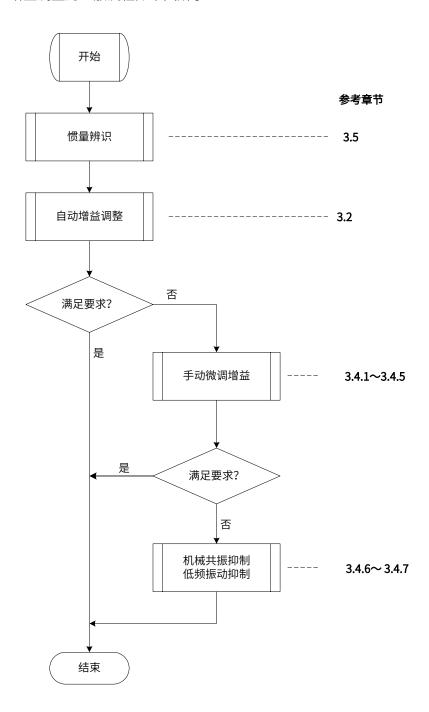


图 3.2 增益调整流程

3.2 自动增益调整

功能说明

概要:

自动增益调整是指通过刚性等级选择功能 (P00-03),伺服驱动器将自动产生一组匹配的增益参数,满足稳、准、快的需求。

流程:

在启动自动增益调整流程前,务必先进行负载参数自学习(目前主要包括负载 惯量辨识)或通过手工计算获得相关负载参数。

自动增益调整流程如下图所示。其中实时自调整模式(P00.02)主要有两种: 1— 标准 模式,主要适用于速度、转矩控制;2——定位模式,主要适用于位置控制模式,在速度控制 和转矩控制时,效果与标准模式相同。刚性等级(P00.03)的设置范围是 0~31,0 级对应的 刚性最弱,增益最小;31 级对应的刚性最强,增益最大。根据不同的负载类型,以下有关刚性等级的经验值可供参考:

5级~8级,一些复杂传动的机械 9级~14级,皮带传动、有悬臂梁结构等刚性较低的系统 15级~20级,滚珠丝杠、齿轮齿条、直驱系统等刚性较高的系统

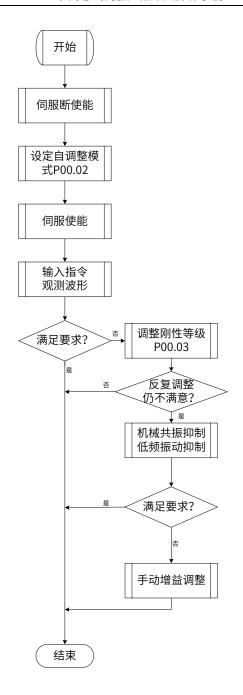


图 3.3 自动增益调整流程

关联参数:

P00	02	实时自调整 模式	0-无效 1-标准模式 2-定位模式	1	0	立即生效	停机设定	PST
P00	03	刚性等级设定	0~31	1	12	立即生效	运行设定	PST
P00	04	惯量比	0~30.00	0.01	100	立即生效	运行设定	PST

自动更新的参数:

随着刚性等级的变化,伺服驱动器内部自动计算增益参数,从而更新以下参数:

功能码		名称	说明	单位	参数值
P01	00	位置环增益1	1.0 1/s~2000.0 1/s	0.1 1/s	自动更新
P01	01	速度环增益1	1.0Hz~2000.0Hz	0.1HZ	自动更新
P01	02	速度环积分时间1	0.15ms~512.00ms	0.01ms	自动更新
P01	04	转矩指令滤波1	0.00ms~100.00ms	0.01ms	自动更新
P01	05	位置环增益2	1.0 1/s~2000.0 1/s	0.1 1/s	自动更新
P01	06	速度环增益2	1.0Hz~2000.0Hz	0.1HZ	自动更新
P01	07	速度环积分时间 2	0.15ms~512.00ms	0.01ms	自动更新
P01	09	转矩指令滤波 2	0.00ms~100.00ms	0.01ms	自动更新

设定为固定值的参数,以下参数会被设定为固定值:

功能码		名称	说明	单位	参数值
P01	03	速度检测滤波1	0.00ms~100.00ms	0.01ms	0.00ms
P01	08	速度检测滤波 2	0.00ms~100.00ms	0.01ms	0.00ms
P01	12	速度前馈增益	0.0%~100.0%	0.1%	30.0%
P01	13	速度前馈滤波时间	0.00ms~64.00ms	0.01ms	0.50ms
P01	15	转矩前馈增益	0.0%~100.0%	0.1%	0.0%
P01	16	转矩前馈滤波时间	0.00ms~64.00ms	0.01ms	0.00ms
P01	03	速度检测滤波1	0.00ms~100.00ms	0.01ms	0.00ms

有条件更新的参数:

以下参数在实时自调整模式为定位模式时,设为固定值,否则保持原值。

功能	码	名称	说明	单位	参数值
P01 18		位置控制切换模式	0-第一增益固定 1-第二增益固定 2-利用 DI 输入(GAIN-SWITCH) 3-转矩指令大 4-速度指令变化大 5-速度指令大 6-位置编差大(P) 7-有位置指令(P) 8-定位未完成(P) 9-实际度置指令加实际 速度(P)	1	10
P01	19	位置控制切换延时	0~1000.0ms	0.1ms	5.0ms
P01	20	位置控制切换等级	0~20000 (单位:根据增益切换 模式说明)	1	50
P01	21	位置控制切换回滞	0~20000 (单位:根据增益切换 模式说明)	1	33
P01	22	位置增益切换时间	0~1000.0ms	0.1ms	3.3ms

3.3 自适应滤波器

功能说明

◆ 概述:

在实际运行状态下,驱动器内部共振检测模块根据电机反馈中的振动成分来推断共振频率,并据此来自动设置内置的陷波滤波器参数,从而减弱共振点附近的振动。

该功能仅适用于位置控制、速度控制模式,并且电机处于无障碍正常旋转的状态(没有处于速度限制、转矩限制、行程限制、位置偏差计数器清零等状态)。

- ◆ 注意事项: 在下列条件下, 自适应滤波器功能可能无效:
- 1共振点频率低于速度响应频率 3 倍时;
- 2 共振峰值较低,或增益较低,以至于共振对控制性能的影响显现不出来时;
- 3 共振点大于 3 个以上;
- 4 受机械非线性因素影响,导致电机转速急剧变化时;
- 5 急加速指令(加减速度绝对值大于 30000rpm/s)时。

◆ 操作流程:

将自适应滤波器模式(P02.02)设置为 0、4 以外的值,输入使能命令和控制指令。共振点的影响会在电机速度上表现出来,共振检测模块会检测到机械共振点,并显示在P02.31~ P02.36, 同时根据设定的自适应滤波器的数量 1 个或 2 个, 第 3 陷波滤波器或(和)第 4 陷波滤波器的参数会动态更新。 一般有发现机械振动的情况下,可以设置P02.02为 1,这时候第 3 陷波滤波器参数会自动更新。待参数稳定后,观测机械振动是否得到有效抑制,如果此时效果满意 就将 P02.02设置为 0,固定参数工作。但是由于有的机械系统不只一个共振点,如果发现仍有 比较大的残余振动就设置 P02.02为 2, 这时候第 4 陷波滤波器参数也会自动更新,减弱另一个 振动点的振动。如果此时效果满意就将P02.02设置为 0,固定参数工作。如果仍然有较大振动可以通过手动设置第 1、第 2 陷波滤波器参数来抑制(详情参考 3.4.6 节)。

◆ 相关参数:

功能码	3	名称	说明	单位	参数值
P02	02	自适应滤波器模式	0-4 0 - 自适应无效,第 3,4 滤波器工作但参数不变 1-1 个自适应滤波器有效 (第 3 滤波器参数根据自适应 结果更新) 2-2 个自适应滤波器有效 (第 3、4 滤波器参数根据自适应结果更新) 3-共振频率测定,结果显示但不 更新滤波器参数 4-清除自适应结果 (自适应无效,且第 3、4 滤波器不工作)	1	0
P02	31	共振点1频率	50∼5000Hz	1Hz	显示参数
P02	32	共振点1频宽	0~20	1	显示参数
P02	33	共振点1深度	0~99	1	显示参数
P02	34	共振点2频率	50~5000Hz	1Hz	显示参数
P02	35	共振点2频宽	0~20	1	显示参数
P02	36	共振点2深度	0~99	1	显示参数

◆ 自动更新的参数

功能码		名称	说明	单位	参数值
P02	10	第3陷波器频率	50~5000Hz	1Hz	5000Hz
P02	11	第3陷波器宽度	0~20	1	2
P02	12	第3陷波器深度	0~99	1	0
P02	13	第4陷波器频率	50~5000Hz	1Hz	5000Hz
P02	14	第4陷波器宽度	0~20	1	2
P02	15	第4陷波器深度	0~99	1	0

3.4 手动增益调整

3.4.1 总体说明

◆ 概要:

J3EB 系列伺服驱动器在大多数场合可以使用自动增益调整功能,但是在某些复杂的负载条件下,自动增益调整不一定能获得最佳的性能,这时候需要对增益参数进行重新调整。本章将对各种控制模式下的手动增益调整方法进行说明。

增益参数的调整时,可以通过安装在电脑上的后台软件对指令的响应曲线进行观测,以 此作为手动调整参数的参考。

3.4.2 位置模式的调整

位置控制模式时的增益手动调整,请参考以下流程:

- 1设置正确的负载惯量值 P00.04,或通过负载参数自学习功能自动设置。
- 2 设置以下参数到如下表所示初始值:

P01	00	位置环增益1	40.0
P01	01	速度环增益 1	20.0HZ
P01	02	速度环积分时间 1	30.00m
P01	03	速度检测滤波 1	0.00ms
P01	04	转矩指令滤波 1	1.00ms
P01	05	位置环增益 2	40.0
P01	06	速度环增益 2	20.0HZ
P01	07	速度环积分时间 2	30.00m
P01	08	速度检测滤波 2	0.00ms
P01	09	转矩指令滤波 2	1.00ms
P01	10	速度调节器 PDFF 系数	100.0%
P02	00	位置指令平滑滤波	0
P02	01	位置指令 FIR 滤波	0

P00	02	实时自调整模式	0
P02	02	自适应滤波器模式	0
P02	04	第1陷波器频率(手动)	5000
P02	07	第2陷波器频率(手动)	5000
P02	10	第3陷波器频率	5000
P02	13	第4陷波器频率	5000
P02	19	位置指令 FIR 滤波 2	0
P02	20	第1减振频率	0
P02	22	第2减振频率	0
P01	18	位置控制切换模式	0
P01	23	速度控制切换模式	0
P01	27	转矩控制切换模式	0
P01	12	速度前馈增益	0
P01	13	速度前馈滤波时间	0

3以下表参数值作为目标值进行调节,直到达到理想的性能指标。

	1 2 2		1- /	
P01	00	位置环增益1	50.0 1/s	观察定位时间,定位时间过长,则增大此值 ,反之减 小。过大易振动
P01	01	速度环增益1	30.0HZ	在不发生振动,无异响,无明显超调的前提 下上调,否则下调
P01	02	速度环积分时间 1	25.00ms	值调小,则定位时间减小,过小可能会发生振动。设 置值较大时会出现位置偏差很难收敛到 0 的情况。
P01	04	转矩指令滤波1	0.50ms	振动发生时候,尝试改变此值。此值与 P01.02配合使用,两者正相关。
P01	12	速度前馈增益	30.0%	在不引起振动和异响的情况下,增大前馈增益可以减小实时的位置偏差。输入指令不均匀时,可以通过增大前馈滤波器时间常数P01.13进行改善。启用速度前馈需要设置P01.11为非0值。

3.4.3 速度模式的调整

速度控制模式时的步骤与位置控制模式类似,除了位置环相关参数 P01.00、P01.05、以及速度前馈参数 P01.12、P01.13 外,其他类同。

3.4.4 增益切换功能

速度控制模式时的步骤与位置控制模式类似,除了位置环相关参数 P01.00、P01.05、以及速度前馈参数 P01.12、P01.13 外,其他类同。

- ◆ 流程: 根据内部状态或通过外部信号切换增益,可以实现效果
 - 1.抑制停机振动,同时尽可能的提高伺服的动态响应跟随性能
 - 2. 提高整定时的增益,缩短定位时间
 - 3. 根据外部信号进行增益切换

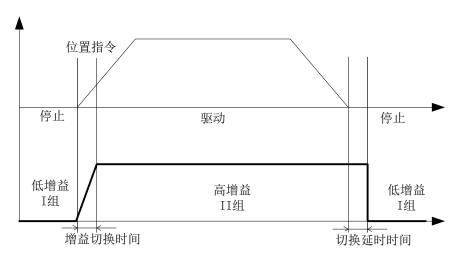


图 3.4 增益切换实例

操作流程:

下面举例说明如何实现运行时高响应跟随,停机时低噪音低振动。

- 1 首先不使能增益切换功能,第 1 增益固定,在有指令运行时调整第 1 组增益,让电机达到很好的动态跟随性能。
- 2 将第1组增益参数复制到第2组参数。
- 3 设定增益切换条件,位置控制时候可设置 P01.18 为 7,同时根据需要设置 P01.19~ P01.22,可使用默认值。
- 4 指令停止时,减小第1速度环增益(P01.01),同时稍微增大转矩指令滤波时间(P01.04),使得停止噪音和振动减小。

增益切换条件说明:

	第2增益切换条件			延迟 时间	切换等级	切换回滞
编	P01.18 P01.23	适用	时序	P01.19	P01.20	P01.21
号	P01.23 P01.27	模式	图	P01.24	P01.25	P01.26
				P01.28	P01.29	P01.30
0	第1增益固定	PST		不适 用	不适用	不适用
1	第2增益固定	PST		不适 用	不适用	不适用
2	利用 DI 输入 (GAIN-SWITCH)	PST		不适 用	不适用	不适用
3	转矩指令大	PST	Α	适用	适用(%)	适用(%)
4	速度指令变化大	S	В	适用	适用(10rpm/s)	不适用
5	速度指令大	PS	С	适用	适用(1rpm/s)	适用(1rpm/s)
6	位置偏差大	Р	D	适用	适用(1 编码器 分辨率单位)	适用(1 编码器 分辨率单位)
7	有位置指令	Р	E	适用	不适用	不适用
8	定位未完成	Р	F	适用	不适用	不适用
9	实际速度大	Р	С	适用	适用(1rpm/s)	适用(1rpm/s)
10	有位置指令 加实际速度	Р	G	适用	适用(1rpm/s)	适用(1rpm/s)

时序图请按编号在图 3.5 中查看。其中:

- 1 当增益切换条件为:利用 DI 输入(GAIN-SWITCH) 时只有当功能码 DI 功能 GAIN-SWITCH 切换动作选择(P01.17)设置为 1 时候才会进行第 1、2 组增益切换,否则进行速度环的 P/PI 切换。
- 2 延迟时间仅作用于从第2增益返回第1增益时。
- 3 当 P01.18 等于 10 时,各参数的定义与其他模式有所不同,请仔细对照图 3.5 中的 G 图进行理解。

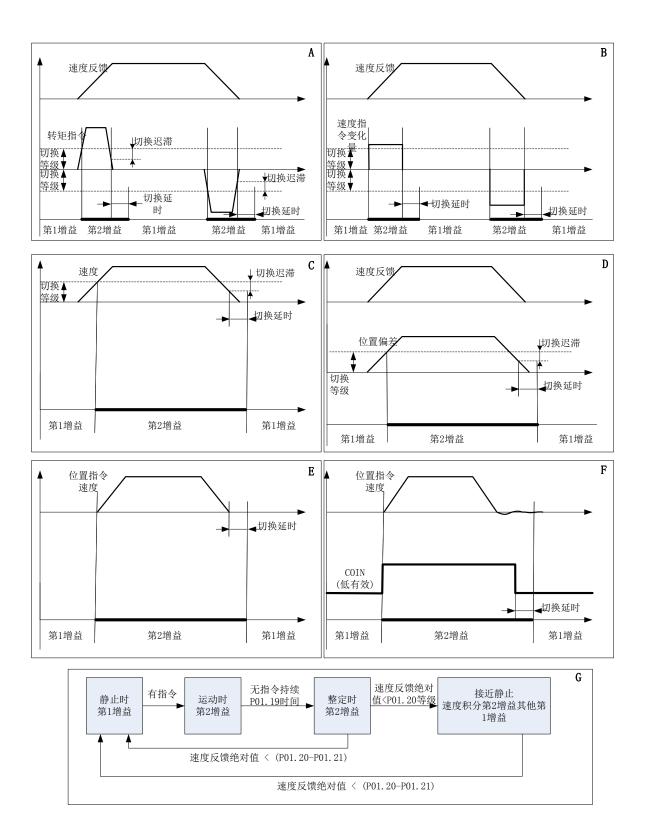


图 3.5 各种条件下增益切换时序图

3.4.5 前馈功能

◆ 概述:

位置控制时,可以根据位置控制指令计算出所需的速度控制值即速度前馈,与根据反馈调节出的速度指令相加,输出实际的速度控制指令。与单纯反馈控制系统相比,可以减小实时的位置偏差,提高系统响应特性。前馈增益越大,位置偏差会越小。理论上,当前馈增益等于100%时,位置偏差等于0。位置偏差遵循以下计算公式:

位置偏差 = (位置指令速度/位置环增益) x (100.0% - 速度前馈增益);

同理,可以根据速度控制指令计算出所需的转矩控制值即转矩前馈,与根据反馈调节出的转矩指令相加,输出实际的转矩控制指令。与单纯反馈控制系统相比,可以减小实时的速度偏差,提高系统响应特性。在位置控制时,使用转矩前馈可以减小加速度恒定段的位置偏差。使用转矩前馈时候,要确保负载惯量参数(P00.04)设置正确。在实际应用中,当前馈增益过大时,可能会导致明显过冲(位置超调),引起机械振动机器工作时会有比较大的声响,此时,可以通过两种方法降低振动和噪音:1调低前馈增益;2增大前馈滤波器时间常数。

◆ 关联参数:

功能码名称		名称	设定范围	最小单 位	出厂设 定
P01	11	速度前馈控制选择	0-无速度前馈 1-内部速度前馈	1	0
P01	12	速度前馈增益	0.0%~100.0%	0.1%	30.0%
P01	13	速度前馈滤波时间	0.00ms~64.00ms	0.01ms	0.50ms
P01	14	转矩前馈选择	0-无转矩前馈 1-内部转矩前馈 2-将 TFFD 用作速度前馈输入	1	0
P01	15	转矩前馈增益	0.0%~100.0%	0.1%	0.0%
P01	16	转矩前馈滤波时间	0.00ms~64.00ms	0.01ms	0.00ms

其中,转矩前馈可以使用模拟量输入外部前馈,可用于上位机计算转矩前馈的情况。 此时需要将转矩前馈选择(P01.14)设置为 2,同时在模拟量输入相关设置里指定 TFFD 的输入 通道,和指令、电压对应关系。

3.4.6 机械共振抑制

机械系统具有一定的共振频率,伺服增益提高时,可能在机械共振频率附近产生共振 ,导致增益无法继续提高。抑制机械共振有 2 种途径:

1. 转矩指令滤波器(P01.04, P01.09)

转矩指令滤波器是数字式低通滤波器,通过设定滤波时间常数,使得转矩指令在截止频 率 附近,及以上的频率成分幅值衰减,从而达到抑制机械共振的目的。

滤波器截止频率 $fc(Hz)=1000 / [2\pi \times 转矩指令滤波器时间常数(ms)]$ 。

2. 陷波滤波器

转矩指令滤波器是数字式带阻滤波器,J3E 伺服驱动器总共有 4 组串联的陷波滤波器可供选择。其中第 1、2 陷波滤波器是手动设置,第 3、4 陷波滤波器是自适应滤波器。

◆ 陷波滤波器

在自适应滤波器不启用参数自适应时(PO2.02 设置没有成 1,2),4 个陷波滤波器全部可以手动调节。此时,仍可以通过设置自适应滤波器模式(P02.02)为 3 启动共振频率检测模块,给伺服使能命令和控制指令,查看显示参数 P02.31~P02.36 获取机械共振数据,以此作为参考来手动设置滤波器。如果有条件也可以通过在机械执行部件上外加振动测试仪对机械系统模态进行测试获取共振点数据。

功能码 名称		名称	设定范围	最小单位	出厂设定
P02	04	第1陷波器频率(手动)	50~5000Hz	1Hz	5000Hz
P02	05	第1陷波器宽度	0~20	1	2
P02	06	第1陷波器深度	0~99	1	0
P02	07	第2陷波器频率(手动)	50~5000Hz	1Hz	5000Hz
P02	80	第2陷波器宽度	0~20	1	2
P02	09	第2陷波器深度	0~99	1	0
P02	10	第3陷波器频率	50~5000Hz	1Hz	5000Hz
P02	11	第3陷波器宽度	0~20	1	2
P02	12	第3陷波器深度	0~99	1	0
P02	13	第4陷波器频率	50~5000Hz	1Hz	5000Hz
P02	14	第4陷波器宽度	0~20	1	2
P02	15	第4陷波器深度	0~99	1	0

其中,陷波器频率是指陷波滤波器的中心频率 f0; 陷波滤器宽度是指陷波滤波器阻带 频宽系数,Kw = (f2-f1)/f0,f2 和 f1 分别为幅频响应特性中衰减-3DB 对应的上限频率和下 限频率;陷波滤波器深度是指陷波滤波器衰减深度系数,即为陷波中心频率点输出输入的 幅值比,Kd = A/A0。

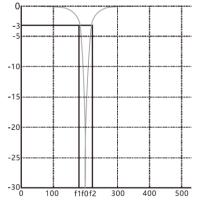


图3.6 陷波滤波器幅频特性

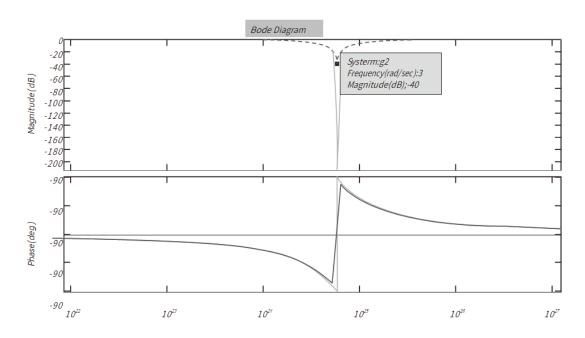
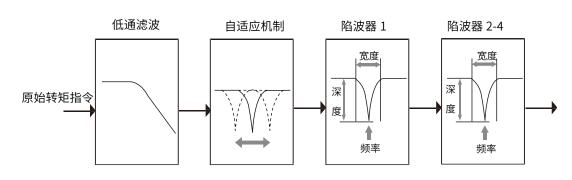
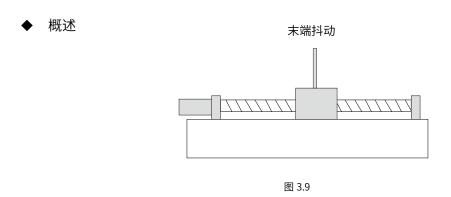
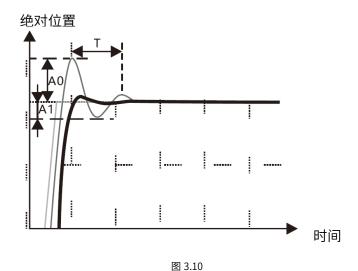


图3.7 陷波滤波器深度设分别为1和0时的频域响应曲线


图3.8 陷波滤波器在伺服控制中的作用

3.4.7 低频振动抑制

如果机械负载的端部长,定位停止时易发生端部振动,影响定位效果。这种振动的频率 一般比上节的机械共振频率低,因此称为低频振动。 通过低频振动抑制功能可以有效降低振 动幅度, 减小定位时间。

◆ 操作流程

如果在实际应用中,遇到执行部件上有长的端部机构,且位置指令停止时有明显的摆动,体现在位置控制波形上,位置偏差(或绝对位置反馈)有周期性的震荡,如图 3.10 所示。此时可以按照图 3.11 所示的步骤,通过后台软件观测当位置指令速度给定从非 0 变为 0 时触发采样绝对位置或位置偏差的波形,计算出低频振动频率和衰减系数(衰减系数 = A1/A0),正确设置到第 1 减振参数(P02.20、P02.21)。再次观测波形,如仍有周期性震荡,继续按照图 3.11 所示的方法设置第 2 减振参数。 低频减振起作用后,定位响应波形会大为改观,定位整定时间明显缩短,如图 3.10 粗线所示。

功能码		名称	设定范围	最小单位	出厂设定
P02	20	第1减振频率	10.0HZ~100.0HZ	0.1Hz	0.0Hz
P02	21	第1减振滤波设定	0~1.0	0.1	0
P02	22	第2减振频率	10.0HZ~100.0HZ	0.1Hz	0.0Hz
P02	23	第2减振滤波设定	0~1.0	0.1	0

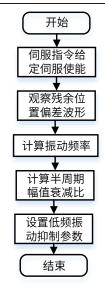


图 3.11 低频抑制功能操作流程

3.5 惯量辨识和编码器初始角辨识

(1) 进入辨识界面之前

离线辨识惯量之前,请先进入 P20.00,点动运行确认电机能正常运行,按键惯量辨识和初始角辨识的操作接口位于 P20.03。先按键找到 P20.03,此时显 示如下:

第一行显示 ,最后一位闪烁,表示可以修改。改成 1,表示将进行正转惯量辨识,改成 2,表示将进行反转惯量辨识,改成 5,表示将进行编码器初始角辨识,改成其余值则无定义。

第二行显示 20003。

(2) 进入辨识界面之后 进入辨识界面之后,如果修改第一行显示的参数值为 1 或 2,然后按 SET 键,则启动惯量辨识,显示如下:

第一行显示 **20.69**,显示当前惯量值(P00.04)的值。

第二行显示 **第二**行显示 ,辨识正在进行惯量辨识。 辨识完成之后,第一行显示本次辨识的 惯量值,第二行显示 ,表示辨识完成。

(3) 辨识完成之后,长按 SET 键(按住 SET 键两秒以上),就可以将刚辨识的惯量值存储 到 E2PROM。实际上是把刚辨识的惯量值记录到 P00.04,然后存储 P00.04 到 E2PROM。

进入辨识界面之后,如果修改第一行显示的参数值为 5,然后按 SET 键,则启动编码器初始角辨识,第一行显示当前的电气角度(P21.09)的值。

第二行显示 **ALLUME** ,表示正在进行初始角辨识。 辨识完成之后,第一行显示当前辨识的初始角值。 第二行显示 **ALED B** ,表示初始角辨识完成。

初始角辨识完成之后,无需存储,长按 SET 键(按住 SET 键两秒以上)没有效果。按 MODE 键可以退出辨识过程。

4

4通讯简介

- ◆ 4.1 CANopen 通讯介绍
- ◆ 4.2 Ethercat 通讯介绍
- ◆ 4.3 多台伺服组网说明

4.1 CANopen 通讯介绍

CANopen 是一种架构在控制局域网路(Controller Area Network, CAN)上的高层通讯协定,包括通讯子协定及设备子协定常在嵌入式系统中使用,也是工业控制常用到的一种现场总线。禾川 J3 CANopen 伺服驱动器严格遵守《CAN in Automation (CiA) draft standard 301》和针对运动控制的《CiA Draft Standard Proposal 402》协议。

4.1.1 对象字典

CANopen 对象字典(OD: Object Dictionary)是 CANopen 协议最为核心的概念。所谓的对象字典就是一个有序的对象组,描述了对应 CANopen 节点的所有参数,包括通讯数据的存放位置也列入其索引.每个对象采用一个 16 位的索引值来寻址,这个索引值通常被称为索引,其范围在 0x0000 到 0xFFFF 之间。为了避免数据大量时无索引可分配,所以在某些索引下也定义了一个 8 位的索引值,这个索引值通常被称为子索引,其范围是 0x00 到 0xFF 之间。

标准对象字典的整体布局定义如表 4-1 所示。

表 4-1,CANopen 对象字典索引区域

索引	对象
0000h	未使用
0001h	静态数据类型
0020h~003Fh	复合数据类型
0040h~005Fh	制造商指定复合数据类型
0060h~025Fh	设备协议指定数据类型
0260h~03FFh	保留
0400h~0FFFh	保留
1000h~1FFFh	通讯协议区
2000h~5FFFh	制造商指定协议区
6000h~67FFh	标准化协议区 1st 逻辑设备
6800h~6FFFh	标准化协议区 2st 逻辑设备
7000h~77FFh	标准化协议区 3st 逻辑设备
7800h~7FFFh	标准化协议区 4st 逻辑设备
8000h~87FFh	标准化协议区 5st 逻辑设备
8800h~8FFFh	标准化协议区 6st 逻辑设备

9000h~97FFh	标准化协议区 7st 逻辑设备
9800h~9FFFh	标准化协议区 8st 逻辑设备
A000h~AFFFh	标准网络变量区
B000h~BFFFh	标准系统变量区
C000h~FFFFh	保留

4.1.2 节点地址 Node_ID

NodelD 节点地址,CANopen 网络中每一台设备都有一个只属于自己的节点地址(包括主站和从站)。用户要在伺服参数 P09.00(2109-01h)用伺服操作面板或者上位机软件 Servo Studio 手动设置,同一网络中,不允许有相同的节点地址,节点地址范围 1~127 (伺服地址可任意设定,不一定要从 1 顺序开始)。

4.1.3 通讯对象标识符 COB-ID

COB-ID 是 CANopen 通讯协议的特有方式,它的全称是 Communication Object Identifier-通讯对象-ID,这些 COB-ID 为 PDO 定义了相应的传输级别,有了这些传输级别后,控制器和伺服就能够在各自的软件里配置里定义相同的传输级别和其里面的传输内容,这样控制器和伺服都采用的同一个传输级别和传输内容后,数据的传输即透明化了,也就是双方都知道所要传输的数据内容了,也就不需要在传输数据时还需要对方回复数据是否传输成功。

为了减少配置工作量,区分通信过程中对象的优先级以及通信对象的识别,CANopen 定义了 11 位的 COB-ID,包括 7 位的节点 ID 和 4 位的功能码。传输数据发生冲突时,CANbus 的仲裁机制会使 COB-ID 最小的讯息继续传送,不用等待或重传,也就是说 COB-ID 数值越小,输出优先等级越高。这些 COB-ID 将在 NMT 初始化态完成进入配置态后生效。广播时 Node-ID 为零。

COB-ID 组成说明如表 4-2 所示。

表 4-2, 报文 11 位 COB-ID 各个位的意义

	COB-ID									
10	9	8	7	6	5	4	3	2	1	0
功能对象编码					节点	点 ID(1~1	.27)			

伺服驱动器支持的 CANopen 对象 COB-ID 如表 4-3 所示:

表 4-3,支持的 CANopen 对象 COB-ID

СОВ	功能码	COB-ID
紧急报文对象 EMCY	0001b	80h+Node_ID
TPDO1	0011b	180h+ Node_ID
RPDO1	0100b	200h+ Node_ID
TPDO2	0101b	280h+ Node_ID
RPDO2	0110b	300h+ Node_ID
TPDO3	0111b	380h+ Node_ID
RPDO3	1000b	400h+ Node_ID
TPDO4	1001b	480h+ Node_ID
RPD04	1010b	500h₊ Node_ID
T_SDO	1011b	580h+ Node_ID
R_SDO	1100b	600h+ Node_ID
NMT 网络管理	1110b	700h+ Node_ID

4.1.4 网络管理系统 NMT

NMT(网络管理, Network management)定义设备内部状态机的状态变更命令(如启动设备、停止设备)、侦测远端设备 bootup 及故障情形。

■ NMT 状态图

状态图如图 4-1 所示,表 4-4 列出了 NMT 状态迁移过程。

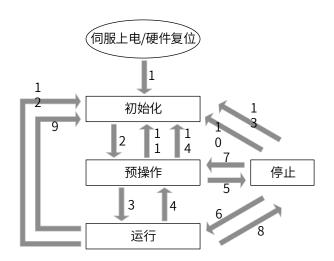


图 4-1,NMT 状态及迁移示意图

表 4-4, NMT 状态迁移过程说明

1	上电或者硬件复位自动进入 NMT 初始化状态
2	NMT 初始化完成,进入预操作状态
3	预操作完成,启动远程节点,进入运行状态
4、7	由运行状态/停止状态进入预操作状态
5、8	由预操作状态/运行状态进入停止状态
6	由停止状态进入运行状态,启用远程节点
9、10、11	复位远程节点
12、13、14	复位远程节点的通讯

NMT 状态说明:

初始化: CANopen 上电或者硬件复位后的第一个 NMT 子状态。执行基本的 CANopen 设备初始化后自动进入复位应用子状态;

预操作:在配置状态下允许 SDO 通讯,不允许 PDO 通讯,此状态常用于配置 PDO 的参数和映射对象等。CANopen 设备可以由 NMT 启动远程节点服务或者通过本 地控制由此状态切换至运行状态。

NMT 运行状态: 此状态允许所有的通讯服务。传输 PDOs,通过 SDO 访问数据字典,然而由于执行方面的问题或者是应用状态机可能要求限制对相关对象字典的访问,例如某对象可能在应用程序执行过程中不允许修改。

NMT 停止状态: 切换 CANopen 设备进入 NMT 停止状态来终止所有通讯服务(除节点保护和心跳,如果已经被激活的话)。此外,这种状态可用于实现特定的应用行为。表 4-5 列出了 NMT 状态与通讯对象的关系。

		· · · · · · · · · · · · · · · · · · ·	
	预操作	运行	停止
过程数据对象 PDO	X	0	Х
服务数据对象 SDO	0	0	Х
同步对象 SYNC	0	0	Х
紧急报文 EMCY	0	0	Х
节点控制和错误控制	0	0	0

表 4-5, NMT 状态与通信对象的关系(注意: O 代表支持, X 表示不支持)

NMT 报文的 COB-ID 固定是 "0x000"。

数据区由两个字节组成:第一个字节是命令字,表明该帧的控制作用,第二个字节是CANopen 节点地址,当其为"0"时为广播消息,网络中的所有从设备均有效。

常见的 NMT 报文命令如表 4-6 所示:

表 4-6, NMT 命令

命令字	说明
-----	----

Ox 01	启动远程节点指令
Ox 02	停止远程节点指令
Ox 80	进入预操作状态指令
Ox 81	复位节点指令
Ox 82	复位通信指令

■ 网络管理系统错误控制

NMT 错误控制主要用于检测网络中的设备是否在线和设备所处的状态,保护节点/寿命保护和心跳(实际使用过程中,心跳保护、节点/寿命保护 2 者最多只能选其一或者都不选)

心跳保护

心跳协议(Heartbeat protocol)是用来监控网络中的节点及确认其正常工作。 心跳模式采用的是生产者—消费者模型,包含主站心跳和从站心跳两方面。

从站监视主站:

主站按其生产者时间发送心跳报文,监视主站的从站在 1016h 子索引时间内,未接收到心跳报文,则认为主站掉站。1016h 某子索引时间>主站生产者时间,否则易误报从站认为主站掉站。

主站监视从站:

从站每隔 1017h 时间发送心跳报文,监视从站的主站(或其他从站),在消费者时间内未接收到心跳报文,则认为该从站掉站。1017h <监控该从站的主站(或其他从站)的消费者时间,否则易误报从站掉站。心跳报文格式如表 47 所示:

 COB-ID
 data

 0x700+节点号
 状态(0: 启动, 4: 停止, 5: 运行, 127: 预操作)

表 4-7, 心跳报文帧格式

节点/寿命保护

节点保护是 NMT 主站通过远程帧,周期地查询 NMT 从站的状态;寿命保护则是 从站通过收到的用于监视从站的远程帧间隔来间接监视主站的状态。节点保护遵循的 是主从模型,每个远程帧都必须得到应答。主站以"监督时间"周期性的发送报文到 从站,从站接收到后即回应,如果超过"监督时间*寿命因子"时间后,主站还没有收 到从站回应的报文,那么主站判断从站出错!

与节点 / 寿命保护相关的对象包括监督时间 100Ch 和寿命因子 100Dh。100Ch 的值是正常情况下节点保护远程帧间隔,单位是 ms,100Ch 和 100Dh 的乘积决定了主机查询的最迟时间。当节点 100Ch 和 100Dh 都为非零,且接收到一帧节点保护请求帧

时,激活寿命保护。主站每隔 100Ch 时间发送节点保护远程帧从机必须做出应答,否则认为从站掉站; 从站 100Ch×100Dh 时间内未接收到节点保护远程帧,则认为主站掉站。

主站请求报文格式——(0x700+节点号)(该报文无数据)

从站应答报文格式——(0x700+节点号)+状态:

状态数据部分包括一个触发位(bit7),触发位必须在每次节点保护应答中交替置 "0"或者"1"。触发位在第一次节点保护请求时置为"0"。位 0 到位 6(bit0~6)表示节点状态;0:初始化,1:未连接,2:连接,3:操作,4:停止,5:运行,127:预操作。

监督时间 100C 不建议低于 10ms,寿命因子必须不小于 2 且 100Ch×100D≤6000。

4.1.5 服务过程对象 SDO

SDO 主要用来在设备之间传输低优先级的对象,典型是用来对从设备进行配置、管理,比如用来修改电流环、速度环、位置环的 PID 参数,PDO 配置参数等,这种数据传输跟 MODBUS 的方式一样,即主站发出后,需要从站返回数据响应。这种通讯方式只适合对参数的设置,不适合于对实时性要求较高的数据传输。

SDO 的通讯方式分为上传和下载,上位机可以根据专用的 SDO 读写指令来读写伺服内部的对象字典。在 CANopen 协议中,对对象字典的内容进行修改可以通过 SDO (Service Data Object)来完成,对于不高于 4 个字节的对象数据,可采用加速传输,高于 4 个字节的数据,可采用分块或者分段传输。伺服驱动器只支持加速传输和分段传输。

■ 往伺服从站写参数

往伺服驱动器从站写参数,请求报文格式如表 4-8 所示,其中字节 0 是命令码。

DATA COB-ID 1 2 4 5 7 0 3 6 23h 数据(4字节) 27h 数据(3字节) 600h+Node-ID 索引 子索引 2Bh 数据(2字节) 数据(1字节) 2Fh

表 4-8, SDO 写入参数时的请求报文格式

如果 SDO 写请求成功,应答报文如表 4-9 所示,此时命令码是 60h:

COD 10					DATA			
COB-ID	0	1	2	3	4	5	6	7
580h+Node-ID	60h 索引 子索引 00							

如果 SDO 写请求失败,此时命令码是 80h,数据字节 4~7 表示相应的中止码,应答报文如下表 4-10 所示,报文内的中止代码参见第六章表 4-37:

表 4-10, SDO 写失败时的应答报文格式

600.10					DATA			
COB-ID	0	0 1 2 3 4 5 6						
580h+Node-ID	80h 索引 子索引 中止代码							

下面举实例说明 SDO 写,示例中 Node-ID 号为 5。三个示例分别说明了 SDO 写 8 位、16 位和 32 位数据的请求报文和应答报文格式,示例中的数据都是十六进制。

(1) SDO 设定控制模式(在字典中的索引为 606000h)为原点模式(代号为 6)。对象 606000h 的数据类型为 INTEGER8,因此数据字节 4~7 中只有字节 4 为有效数据。请求报文如表 4-11 所示:

表 4-11, SDO 写 8 位数据的请求报文示例

COB-ID	0	1	2	3	4	5	6	7
605	2F	60	60	00	06	00	00	00

此时若写入成功,则应答报文如表 4-12 所示:

表 4-12, SDO 写入 8 位数据成功时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
585	60	60	60	00	00	00	00	00

若写入失败,此时数据字节 4~7 显示错误码,则应答报文如表 4-13 所示:

表 4-13, SDO 写 8 位数据失败时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
585	80	60	60	00	xx	xx	xx	xx

(2) SDO 设定正向转矩限制(在字典中的索引为 60E000h)值为 1500。对象 60E000h 的数据类型为 UNSIGNED INTEGER16,因此数据字节 4~7 中只有字节 4~5 为有效数据。请求报文如表 4-14 所示:

表 4-14, SDO 写 16 位数据的请求报文示例

COB-ID	0	1	2	3	4	5	6	7
605	2B	E0	60	00	DC	05	00	00

此时若写入成功,则应答报文如表 4-15 所示:

表 4-15, SDO 写 16 位数据成功时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
585	60	E0	60	00	00	00	00	00

若写入失败,此时数据字节 4~7 显示错误码。若错误码为 06070010h,则应答报文如表 4-17 所示:

表 4-17, SDO 写 16 位数据失败时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
585	80	E0	60	00	10	00	07	06

(3) SDO 设定软限位的极小值(在字典中的索引为 607D01h)为-20000000(十六进制表示为 FECED300h)。对象 607D01h 的数据类型为 INTEGER32,因此数据字节 4~7都为有效数据。请求报文如表 4-18 所示:

表 4-18, SDO 写 32 位数据的请求报文示例

COB-ID	0	1	2	3	4	5	6	7
605	23	7D	60	01	00	D3	CE	FE

此时若写入成功,则应答报文如表 4-19 所示:

表 4-19, SDO 写 32 位数据成功时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
585	60	7D	60	01	00	00	00	00

若写入失败,此时数据字节 4~7 显示错误码。若错误码为 06070010h,则应答报文如表 4-20 所示:

表 4-20,SDO 写 32 位数据失败时的应答报文示例

			_					
COB-ID	0	1	2	3	4	5	6	7
585	80	7D	60	01	10	00	07	06

■ 往伺服从站读参数

往伺服驱动器从站读参数,请求报文格式如表 3-21 所示,其中字节 0 是命令码,无论读多少位宽的数据,命令码都是 40h。

 DATA

 COB-ID
 DATA

 0 1 2 3 4 5 6 7

 600h+Node-ID 40h 索引 子索引 00

表 4-21, SDO 读参数时的请求报文格式

如果读取成功,应答报文格式如表 4-22 所示:

DATA COB-ID 0 | 1 | 2 3 4 5 6 7 43h 数据(4字节) 47h 数据(3字节) 580h+Node-ID 索引 子索引 4Bh 数据(2字节) 4Fh 数据(1字节)

表 4-22, SDO 读参数成功时的应答报文格式

如果读取失败,此时命令码是 80h,数据字节 4~7 表示相应的中止码,应答报文格式如表 3-23 所示,报文内的中止代码参见第六章表 4-37:

DATA COB-ID 1 2 3 4 5 6 7 0 580h+Node-ID 80h 索引 子索引 中止代码

表 4-23, SDO 读参数失败时的应答报文格式

下面举实例说明 SDO 读数据,示例中 Node-ID 号为 2。三个示例分别说明了 SDO 读 8 位、16 位和 32 位数据的请求报文和应答报文格式,示例中的数据都是十六进制。

(1) SDO 读插补周期时间单位(在字典中的索引为 60C201h),请求报文如表 4-24 所示:

表 4-24, SDO 读参数时的请求报文示例 1(目标数据类型为 8位)

COB-ID	0	1	2	3	4	5	6	7
602	40	C2	60	01	00	00	00	00

对象 60C201h 的数据类型为 UNSIGNED INTEGER8,因此数据字节 4~7 中只有字节 4 为有效数据。若读取成功,读取值为 3,则应答报文如表 4-25 所示:

表 4-25, SDO 读 8 位数据类型参数成功时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
582	4F	C2	60	01	03	00	00	00

若读取失败,此时数据字节 4~7 显示错误码,则应答报文如表 4-26 所示:

表 4-26, SDO 读 8 位数据类型参数失败时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
582	80	C2	60	01	xx	xx	xx	xx

(2) SDO 读取转矩指令(在字典中的索引为 607400h),请求报文如表 4-27 所示:

表 4-27, SDO 读参数时的请求报文示例 2(目标数据类型为 8位)

COB-ID	0	1	2	3	4	5	6	7
602	40	74	60	00	00	00	00	00

对象 607400h 的数据类型为 INTEGER16,因此数据字节 4~7 中只有字节 4~5 为有效数据。此时若读取成功,读取值为 750(十六进制表示为 2EEh),则应答报文如表 4-28 所示:

表 4-28, SDO 读 16 位数据类型参数成功时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
582	4B	74	60	00	EE	02	00	00

若读取失败,此时数据字节 4~7 显示错误码。若错误码为 05040000h(表示读取超时),则应答报文如表 4-29 所示:

表 4-29, SDO 读 16 位数据类型参数失败时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
582	80	74	60	00	00	00	04	05

(3) SDO 读取当前进给常数分母(在字典中的索引为 609202h),请求报文如表 4-30 所示:

表 4-30, SDO 读参数时的请求报文示例 3(目标数据类型为 32位)

COB-ID 0 1 2	3 4	5	6	7
--------------	-----	---	---	---

602	40	92	60	02	00	00	00	00
002	+0	32	60	02	00	00	00	00

对象 609202h 的数据类型为 UNSIGNED INTEGER32,因此数据字节 4~7 都为有效数据。此时若读取成功,读取值为 120000(十六进制表示为 1D4C0h),则应答报文如表 4-31 所示:

表 4-31, SDO 读 32 位数据类型参数成功时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
582	43	92	60	02	C0	D4	01	00

若读取失败,此时数据字节 4~7 显示错误码。若错误码为 05040000h (表示读取超时),则应答报文如表 4-32 所示:

表 4-32, SDO 读 32 位数据类型参数失败时的应答报文示例

COB-ID	0	1	2	3	4	5	6	7
582	80	92	60	02	00	00	04	05

4.1.6 过程数据对象 PDO

PDO 一次性可传送 8 个字节的数据,没有其它协议预设定,主要用来传输需要高频率交换的数据。PDO 的传输方式打破了现有的数据问答式传输理念,采用全新的数据交换模式,设备双方在传输前先在各个设备定义好数据接收和发送区域,在数据交换时直接发送相关的数据到对方的数据接收区即可,减少了问答式的询问时间,从而极大的提高了总线利用率。

■ PDO 分类

PDO 从写入和发出信息的角度来看,可以分为 RPDO(信息写入从站)和 TPDO(从站发送出信息)。

RPDO 相关的参数内容由通讯参数(1400H~15FFH)和 RPDO 映射参数(1600H~17FFH) 决定,每一组的通讯参数与映射参数有一一对应的关系。例如,1400H 与 1600H 为第一 组 RPOO 参数内容,1401H 与 1601H 为第二组 RPDO 参数内容。

TPDO 相关的参数内容由通讯参数 (1800H~19FFH) 和 TPDO 映射参数 (1A00H~1BFFH)决定。每一组的通讯参数与映射参数有一一对应的关系。例如,1800H~16000H~1600H~1600H~1600H~16000H~16000H~16000H~16000H~16000H~16000H~16000H~16

PDO 对象列表对应关系如表 3-33 所示。

(表中仅列出 4 组 RPDO 和 4 组 TPDO,COB-ID 可根据实际使用情况做修改)

表 3-33, PDO 对象列表

名称	序列	通讯参数	映射参数	COB-ID(默认)
	1	1400h	1600h	200+Node-ID
DDD0	2	1401h	1601h	300+Node-ID
RPDO	3	1402h	1602h	400+Node-ID
	4	1403h	1603h	500+Node-ID
	1	1800h	1A00h	180+Node-ID
TDDO	2	1801h	1A01h	280+Node-ID
TPDO	3	1802h	1A02h	380+Node-ID
	4	1803h	1A03h	480+Node-ID

■ 通讯参数

在 CANopen 协议 CIA301 中,通讯参数组 1400h~15FFh,1800h~19FFh 定义都是一致的。下面以 1800h 为例子说明定义内容,如表 3-34 所示:

表 3-34, TPDO 配置内容说明

索引	子索引	名称	取值
1800h	00h	子索引数	02h~05h
	01h	TPDO 使用的 COB-ID	参考 3.4 章内容
	02h	传输类型	0~255
	03h	抑制时间	单位: 100us
	05h	事件定时器	单位: 1ms

子索引数: 定义有效的对象条目记录,其值至少为 02h,如果支持抑制时间其值应该设为 03h, 如果支持事件定时器则其值应该为 05h。

TPDO 使用的 COB-ID: 参考 3.1.4 章内容。

- 抑制时间:该值单位 100us,值 0 表示禁用。此参数定义两个连续 PDO 传输的最小间隔时间,避免由于高优先级信息的数据量太大,始终占据总线,而使其它优先级较低的数据无力竞争总线的问题。置数值后,同一个 TPDO 传输间隔减不得小于该参数对应的时间。
- 事件定时器:针对异步传输 (传输类型为 254 或 255)的 TPDO,定义事件计时器,事件计时器也可看做是一种触发事件,它也会触发相应的 TPDO 传输。如果在计时器运行周期内出现数据改变等其它事件,TPDO 也会触发,且事件计数器会被立即复位。

■ 传输类型: PDO 有同步传输和异步传输两种传输方式:

同步传输(传输类型: 0-240)

同步报文触发传输:在该传输模式下,控制器必须具有发送同步报文的能力,伺服 在接收到该同步报文后在发送。同步传输包括非周期和周期 2 种类型。

非周期(传输类型 0):由远程帧预触发传送,或者由设备子协议中规定的对象特定事件预触发传送。该方式下伺服驱动器每接收到一个同步报文 PDO 里的数据即发送一次。

周期(传输类型: 1-240):传送在每 1 到 240 个 SYNC 消息后触发。该方式下伺服驱动器每接收到 n 个同步报文后,PDO 里的数据发送一次。

异步传输(传输类型: 254/255)

从站报文数据改变后即发送,不管主站是否询问,而且可以定义同一个报文两次发送的时间间隔,避免高优先级报文一直占据总线(COB-ID 数值越低优先级越高)。

■ 映射参数

在 CANopen 协议 CIA301 中,映射组 1600h~17FFh,1A00h~1BFFh 定义都是一致的。下面以 1A00h 为例,如表 4-35:(每组 PDO 映射对象总长度不能超过 8 字节)

 索引
 子索引
 名称

 1A00h
 00h
 TPDO 映射应用对象数目

 01h
 第1个映射应用对象

 02h
 第2个映射应用对象

 3h
 第3个映射应用对象

 :
 :

 40h
 第40个映射应用对象

表 4-35, TPDO 映射对象

RPDO 映射应用对象数目:要组态的 TPDO 参数数量,范围 0~8

第一组 RPDO 通讯参数设定

索引	子索引	名称	说明	
1400h	00h	子索引数		
	01h	RPDO 使用的 COB-ID		
	02h	传输类型	0~255	
	03h	抑制时间	单位: 100us, 0 表示禁用	

SV-J3 系列总线伺服产品中文操作手册

	04h	兼容性条目	
	05h	事件定时器	单位:ms,0 表示禁用
	06h	同步起始值	

第一组 RPDO 映射参数设定

索引	子索引	名称
1600h	00h	RPDO 映射应用对象数目
	01h	第1个映射应用对象
	02h	第 2 个映射应用对象
	03h	第 3 个映射应用对象
	:	:
	14h	第 20 个映射应用对象

第二组 RPDO 通讯参数设定

索引	子索引	名称	
1401h	00h	子索引数	
	01h	RPDO 使用的 COB-ID	
	02h	传输类型	0~255
	03h	抑制时间	单位:100us,0 表示禁用
	04h	兼容性条目	
	05h	事件定时器	单位: ms,0 表示禁用
	06h	同步起始值	

第二组 RPDO 映射参数设定

索引	子索引	
1601h 00h		RPDO 映射应用对象数目
	01h	第1个映射应用对象
	02h	第 2 个映射应用对象
	03h	第 3 个映射应用对象
	:	:
	14h	第 20 个映射应用对象

第 N 组 RPDO 通讯参数(1400H~15FFH)和第 N 组 RPDO 的 映射参数(1600H~17FFH) 格式 如上

第一组 TPDO 通讯参数设定

索引	子索引	名称	

1800h	00h	子索引数	
	01h	RPDO 使用的 COB-ID	
	02h	传输类型	0~255
	03h	抑制时间	单位:100us,0 表示禁用
	04h	兼容性条目	
	05h	事件定时器	单位: ms,0 表示禁用
	06h	同步起始值	

第一组 TPDO 映射参数设定

索引	子索引	
1A00h 00h		RPDO 映射应用对象数目
	01h	第1个映射应用对象
	02h	第 2 个映射应用对象
	03h	第 3 个映射应用对象
	:	:
	14h	第 20 个映射应用对象

第二组 TPDO 通讯参数设定

	N-H I I I CANDARAC		
索引	子索引	名称	
1801h	00h	子索引数	
	01h	RPDO 使用的 COB-ID	
	02h	传输类型	0~255
	03h	抑制时间	单位: 100us, 0 表示禁用
	04h	兼容性条目	
	05h	事件定时器	单位: ms, 0 表示禁用
	06h	同步起始值	

第二组 TPDO 映射参数设定

31-2 · 10 · (3) 2 × (2) 2			
索引	子索引		
1A01h	00h	RPDO 映射应用对象数目	
	01h	第1个映射应用对象	
	02h	第 2 个映射应用对象	
	03h	第 3 个映射应用对象	
	:	:	
	14h	第 20 个映射应用对象	

第 N 组 TPDO 通讯参数(1800H~19FFH)和第 N 组 TPDO 映射参数(1A00H~1BFFH)格式 如上

4.1.7 紧急对象 EMCY

紧急对象由 CANopen 设备的内部错误触发,遵循生产者—消费者方式。某个节点发生故障,发出紧急报文之后,其余节点可以选择处理或者忽略此紧急报文。紧急对象适合中断类型的错误报警。一个"错误事件"仅触发一次紧急报文,设备无新错误不会再产生

紧急报文内容格式如表 4-36 所示:

COB-ID 0 2 3 4 5 6 7 1 80h+Node-ID 厂家自定义故 | 保留(0值) CiA 协议 错误 故障码 寄存器 障码

表 4-36,紧急报文格式

其中 CiA 协议故障码参见表 7-3,错误寄存器与对象 1001h 保持一致。厂家自定义故障码参见表 7-1、表 7-2。紧急报文的保留字节始终为 0。另外发生故障之后,对象 603Fh 的内容是 CiA 协议故障码,对象 213Fh 的内容是厂家自定义故障码。

对于 EtherCAT 总线,发生故障之后,对象 603Fh 的内容是 CiA 协议故障码,对象 213Fh 的内容是厂家自定义故障码。

4.1.8 EDS 文件

EDS(Electronic data sheet,电子数据表格)文件是 PLC 等上位控制器所连接从站的标识文件或者类似码,通过该文件来辨认从站所属的类型。该文件包含了从站的所有基本信息,比如生产厂家、序列号、软件版本、支持波特率种类、可以映射的对象字典及各个对象字典的属性等等参数。大部分 PLC 在进行硬件配置前,需要把从站的 EDS 文件导入到上位组态软件中。

禾川 J3 系列 CANopen 驱动器有专用的 EDS 文件,如有需求,请咨询相关人员。

4.1.9 SDO 中止代码

SDO 操作失败时,应答报文格式参见第三章的表 3-10 和表 3-23,报文内的中止代码可在表 4-37 内查询。

表 4-37,SDO 中止代码及相应描述

中止代码	描述	
0503 0000h	翻转位没有交替变化	
0504 0000h	SDO 协议超时	
0504 0001h	客户端/服务器命令码无效或未知	
0504 0002h	无效的块大小(仅块模式)	
0504 0003h	无效的序列号(仅块模式)	
0504 0004h	CRC 错误(仅块模式)	
0504 0005h	内存不足	
0601 0000h	对象不支持访问	
0601 0001h	试图读取只写对象	
0601 0002h	尝试写入只读对象	
0602 0000h	访问对象不存在于对象字典	
0604 0041h	对象不能被映射进 PDO。	
0604 0042h	映射的对象数量和长度超出 PDO 的长度限制	
0604 0043h	常规参数不兼容的原因	
0604 0047h	设备内部常规不兼容	
0606 0000h	硬件错误导致的访问失败	
0607 0010h	数据类型不匹配,服务长度参数不匹配	
0607 0012h	数据类型不匹配,服务长度参数太大	
0607 0013h	数据类型不匹配,服务长度参数太小	
0609 0011h	子索引不存在	
0609 0030h	无效的参数值(写入参数超过允许范围)	
0609 0031h	写入参数值太高(仅下载)	
0609 0032h	写入参数值太低(仅下载)	
0609 0036h	最大值小于最小值	
060A 0023h	资源不可用: SDO 连接	
0800 0000h	常规错误	
0800 0020h	数据不能传输或保存到应用程序。	
0800 0021h	由本地控制导致的数据不能传输或保存到应用中	
0800 0022h	由设备当前状态导致的数据不能传输或保存到应用中	
0800 0023h	对象字典动态生成失败或对象字典不存在(例如因为文件错误导致从文	
0000 002311	件生成对象字典失败)	
0800 0024h	无可用数据	

4.2 EtherCAT 通讯介绍

EtherCAT 是德国倍福开发的一种高速实时以太网技术,较低硬件成本,应用方便,网络柘朴简单,使用标准的以太网物理,可用于工业现场高速 IO 互联及数据交互。其基本的通讯方式为主从通讯方式,单主多从通讯。主站可以由电脑的普通网卡可以实现或者使用专用主站 PLC,从站一般由倍福提供的 ET1100 或者授权第三方的集成从站 ASIC 组成。

其基本特点有:

- 速度快:
 - 精确的同步由分布式时钟实现
- 数据刷新速度快30 μs 处理 1000 个数字量 I/O,100 μs 处理 100 个伺服轴
- 精确的同步由分布式时钟实现
- 高效率,最大化利用以太网带宽进行用户数据传输
- 同步性能好,各结点从站设备可以达到小于 1us 的同步精度

4.2.1 EtherCAT 支持的控制模式

J3EB 驱动器 EtherCAT 基于 CANOpen 应用层行规 CiA402 伺服和运动控制行规。支持 CiA 402 以下各种模式,见表 4-2-1。

表 4-2-1,带 EtherCAT 功能的伺服驱动器支持的 CiA402 模式

CiA402 控制模式	是否支持
周期同步位置(CSP)	是
周期同步速度(CSV)	是
周期同步转矩(CST)	是
回原模式(HM)	是
轮廓位置模式(PP)	是
轮廓速度模式(PV)	是
轮廓转矩模式(PT)	是

4.2.2 EtherCAT 帧结构

EtherCAT 的帧结构由 Ethernet 帧头+1 个以上的 EthernetT 子报文+帧校验序列(FCS) 组成,如下图

14byte 4	46~1500byte 4b	yte
Ethernet Header	Ethernet Data	FCS

图 4-2-1, EtherCAT 帧结构

4.2.3 EtherCAT 状态机

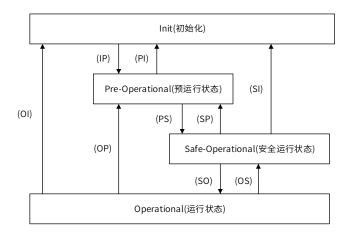


图 4-2-2, EtherCAT 状态机

EtherCAT 从站设备要求实现以上四种基本的状态,便于主站跟从站之间数据交互管理从站应用程序的状态机。参见图 4-2。

Init(I):初始化状态,

Pre-Operational(P): 预运行状态,

Safe-Operational(S):安全运行状态,

Operational(O):运行状态。

从站初始化到运行状态遵循从预运行状态,然后安全运行状态,然后再到运行状态规律进行切换。而运行状态可以直接切回到其它各种状态。

EtherCAT 各状态以及各状态转化操作见表 4-2-2 所示。

状态和状态转化	操作
初始化(Init)	应用层没有通讯,从站只能读写 ESC 芯片寄存器。
	主站配置从站站点地址寄存器。
初始化向预运行转化	如果支持邮箱通讯,配置邮箱相关寄存器。
Init To Pre-OP(IP)	如果支持分布式时钟,配置 DC 相关寄存器。
	主站写入状态控制寄存器,以请求 Pre-OP 状态。
预运行(Pre-OP)	应用层邮箱通讯
预运行向安全运行状态	主站使用邮箱初始化过程数据映射。
转化	主站配置过程数据使用的 SM 通道。
Pre-OP To Safe-OP(PS)	主站配置 FMMU。
Pre-OP TO Sale-OP(PS)	主站写入状态控制寄存器,请求 Safe-OP 状态。
空会に会(Cafa OD)	应用层支持邮箱通讯。
安全运行(Safe-OP)	有过程数据通讯,但只允许读入数据,不产生输出信号。
安全运行向运行状态转	主站发送有效输出数据。
化	
Safe-OP To Op(SO)	主站写入状态控制寄存器,请求 Op 状态。
运行状态(Op)	输入输出全部有效。

表 4-2-2,EtherCAT 状态说明

简要说明如表 4-2-3 所示

表 4-2-3, EtherCAT 状态简要

状态	通讯动作		
1人心	SDO	TxPDO	RxPDO
初始化(Init)	NO	NO	NO
预运行(Pre-OP)	YES	NO	NO
安全运行(Safe-OP)	YES	YES	NO
运行状态(Op)	YES	YES	YES

4.2.4 过程数据 PDO

周期性过程数据用于主站与从站之间进行周期性控制数据的交互。伺服驱动器使用SM2(0x1C12)通道映射 RxPDO 数据,使用 SM3(0x1C13)通道映射 TxPDO 数据。

伺服驱动器支持五组 PDO 映射,每组 PDO 最多支持 20 个映射对象。其中前面 4 组 PDO 支持重新映射,第 5 组 PDO 为固定映射(推荐适配欧姆龙 PLC)参见表 4-2-4:

5个RTPO	1600h~1603h	可变映射
	1604h	固定映射
5个TPDO	1A00h~1A03h	可变映射
	1A04h	固定映射

表 4-2-4, EtherCAT 的 PDO 映射默认配置

PDO	映射对像	PDO 配置
1000	控制字(6040h)	60400010
1600h	操作模式 (6060h)	60600008
(RPDO1)	目标位置(607Ah)	607A0020
(9Byte)	探针功能(60B8h)	60B80010
	控制字(6040h)	60400010
	操作模式 (6060h)	60600008
1601h	目标转矩 (6071h)	60710010
(RPDO2)	目标位置(607Ah)	607A0020
(19Byte)	电机最大速度(6080h)	60800020
	探针功能(60B8h)	60B80010
	目标速度(60FFh)	60FF0020
	控制字(6040h)	60400010
1602h	操作模式 (6060h)	60600008
	最大转矩(6072h)	60720010
(RPDO3) (15Byte)	目标位置(607Ah)	607A0020
(13byte)	探针功能(60B8h)	60B80010
	目标速度(60FFh)	60FF0020
	控制字(6040h)	60400010
1002h	操作模式 (6060h)	60600008
1603h	目标转矩 (6071h)	60710010
(RPDO4)	最大转矩(6072h)	60720010
(21Byte)	目标位置(607Ah)	607A0020
	电机最大速度(6080h)	60800020

PDO	映射对像	PDO 配置
	探针功能(60B8h)	60B80010
	目标速度(60FFh)	60FF0020
	控制字(6040h)	60400010
	控制模式(6060h)	60600008
	目标转矩(6071h)	60710010
1604h	目标位置(607Ah)	607A0020
(RPDO5)	最大轮廓速度(607Fh)	607F0020
(23Byte)	探针功能(60B8h)	60B80010
	正向最大转矩限制(60E0h)	60E00010
	负向最大转矩限制(60E1h)	60E10010
	目标速度(60FF)	60FF0020
	错误代码(603Fh)	603F0010
	状态字(6041h)	60410010
	位置反馈(6064h)	60640020
1A00h	控制模式显示(6061h)	60610008
(TXPDO1)	探针状态(60B9h)	60B90010
(25Byte)	探针 1 上升沿位置反馈(60BAh)	60BA0020
	位置偏差值(60F4h)	60F40020
	DI 输入状态(60FDh)	60FD0020
	伺服内部错误代码(213Fh)	213F0010
	错误代码(603Fh)	603F0010
	状态字(6041h)	60410010
	控制模式显示(6061h)	60610008
	位置反馈(6064h)	60640020
1A01h	速度反馈值(606Ch)	606C0020
(TXPDO2)	转矩反馈值(6077h)	60770010
(29Byte)	探针状态(60B9h)	60B90010
	探针 1 上升沿位置反馈(60BAh)	60BA0020
	探针 1 下降沿位置反馈(60BBh)	60BB0020
	DI 输入状态(60FDh)	60FD0020
	错误代码(603Fh)	603F0010
	状态字(6041h)	60410010
	控制模式显示(6061h)	60610008
1A02h	位置反馈(6064h)	60640020
(TXPDO3)	速度反馈值(606Ch)	606C0020
(25Byte)	转矩反馈值(6077h)	60770010
	探针状态(60B9h)	60B90010
	探针 1 上升沿位置反馈(60BAh)	60BA0020
	DI 输入状态(60FDh)	60FD0020
	错误代码(603Fh)	603F0010
	状态字(6041h)	60410010
1400	控制模式显示(6061h)	60610008
1A03h	位置反馈(6064h)	60640020
(TXPDO4)	速度反馈值(606Ch)	606C0020
(25Byte)	转矩反馈值(6077h)	60770010
	探针状态(60B9h)	60B90010
	探针 1 上升沿位置反馈(60BAh)	60BA0020

PDO	映射对像	PDO 配置
	DI 输入状态(60FDh)	60FD0020
	状态字(6041h)	60410010
	控制模式显示(6061h)	60610008
	位置反馈(6064h)	60640020
	速度反馈值(606Ch)	606C0020
1A04h	转矩反馈值(6077h)	60770010
(TXPDO5)	探针状态(60B9h)	60B90010
(33Byte)	探针 1 上升沿位置反馈(60BAh)	60BA0020
	探针 2 上升沿位置反馈(60BCh)	60BC0020
	位置偏差值(60F4h)	60F40020
	错误代码(603Fh)	603F0010
	DI 输入状态(60FDh)	60FD0020

■ 同步管理 PDO 配置

J3EB 驱动器中,只支持一个 RxPDO 及一个 TxPDO 配置。如表 4-2-5 所示:

表 4-2-5,伺服驱动器 EtherCAT 支持的 PDO

索引	子索引	映射对象
0x1C12	0	1600~1604 五组 RxPDO 之中一组作为 PDO 配置
0x1C13	0	1A00~1A04 五组 TxPDO 之中一组作为 PDO 配置

■ PDO 映射管理

PDO 映射内容包含需要接收或者发送 PDO 的信息,包括索引,子索引,及数据长度。其子索引 0 表示 PDO 映射对象的个数,子索引 1 到 n 代表该 PDO 第 1 到 n 个元素代表的内容,每个 PDO 映射对象最多可以映射一个包含 4 个字节的数据对象,一个 PDO 最多可以包含 4*n 个数据长度。

映射内容由 2 个字节表示对象的索引,一个字节表示子索引,一个字节表示数据长度,如下表 4-2-6 所示:

表 4-2-6,映射内容结构

字节	字节 3~2	字节 1	字节 0
含义	索引	子索引	数据长度

索引以及子索引决定该对象在对象字典中的位置信息,数据长度表示该对象有多少个位组成。长度信息一般有字节(8bit),字(16bit),双字(32bit)三种类型,具体由实际的对象长度组成,由一个 16 进制的字符串组成。

对象长度	位长
08h	8bit
10h	16bit
20h	32bit

例如:某对象映射内容为 60400010h 表示该对象的索引是 0x6040,子索引为 0x00,长度为 16bit 即一个字。

4.2.5 邮箱数据 SDO

SDO 参数是 CoE 定义的非周期性数据通信,主站通过读写邮箱数据 SM 通道实现非周期性数据交互。J3E 驱动器可以通过 SDO 修改驱动器参数。

4.2.6 分布式时钟

分布时钟(DC, Distributed Clock, 64bit)可以使所有 EtherCAT 设置具有相同的系统时间,从而控制各设备任务的同步执行。从站设备可以根据同步系统时钟产生的同步信号,用于同时触发各从站数据同步更新。J3EB 驱动器支持同步时钟模式,目前支持SYNC0产生的同步信号模式和 Free Run 模式。

4.2.7 CiA402 控制流程介绍

伺服驱动器的电源控制相关的状态机如下图 4-2-3 所示。

PDS 状态机各阶段电源状态如下表 4-2-7 所示。

表 4-2-7, PDS 状态机各阶段电源状态

PDS 阶段	控制电源	功率电源	驱动状态
阶段一	ОК	NO	NO
阶段二	ОК	ОК	NO
阶段三	ОК	ОК	ОК

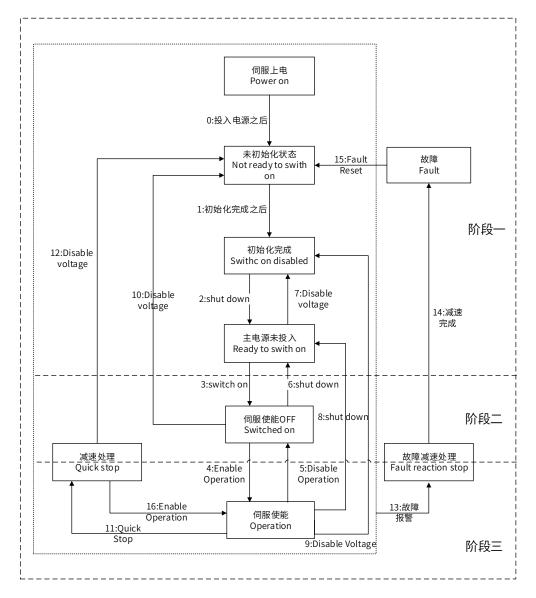


图 4-2-3, CiA402 控制过程状态机

4.2.8 EtherCAT 伺服从站地址设置

EtherCAT 地址确定由 P09-18 决定:

P09-18 设置为 0 时,由上位机写入 ESC 的地址决定从站 ALIAS 地址,其它值时 ALIAS 由 P09-18 的值决定从站地址。当上位机采用自动增量寻址时 ALIAS 地址忽略。

用户可在伺服参数 P09.18(2109-13h)用伺服操作面板或者上位机软件 Servo Studio 手动设置,同一网络中,不允许有相同的节点地址。

4.2.9 ESI 文件

ESI 文件(或 XML 形式)记载了 J3EB 伺服驱动器 EtherCAT 从站的信息,主站根据 ESI 生成 ENI,再构成 EtherCAT 网络,对于常见的 PLC 控制器(例如倍福、欧姆龙等),本公司所提供的 ESI 文件(或 XML 形式)需先保存在主站指定的文件夹里面才能正常通讯。

4.3 多台伺服组网说明

4.3.1 多台伺服组网

CANopen 伺服驱动器:

多台 CANopen 伺服驱动器并网组成网络时,不同的控制器要求可能有区别,正常情况下是第一台伺服和控制器 canH 和 canL 之间并联 120Ω电阻,最后一台伺服驱动器也要加 120 欧姆终端电阻(注意:多台 CANopen 伺服驱动器联网时候不必要严格按照上进下出的网口顺序插好网线)。

EtherCAT 伺服驱动器:

多台 EtherCAT 伺服驱动器组网时,要严格按照上进下出的网口顺序插好网线,上位机决定是否设置 P09.18(2109-13h)伺服站号。

注意:

- 1.多台 CANopen 伺服驱动器联网时候不必要严格按照上进下出的网口顺序插好网线;
- 2.CANopen 伺服站点号由 P09.00(2109_01h)决定, EtherCAT 伺服站点号由 P9.18(2109_13h)决定:

P09-18 设置为 0 时,由上位机写入 ESC 的地址决定从站 ALIAS 地址,其它值时 ALIAS 由 P09-18 的值决定从站地址。当上位机采用自动增量寻址时 ALIAS 地址忽略。

- 3.总线伺服驱动器网线电柜走线时应该跟其它电缆线分开,特别是强电线路,尽量远离干扰源(如变压器、变频器、机柜风扇等),尽可能的减少干扰;
- 4.总线伺服驱动器网线尽量采用双绞网络线,提高高频磁场噪声干扰的抵抗能力,也能减小线缆对外的辐射;
- 5.总线伺服驱动器的接地尽量与其它接地分开,单独接地处理;
- 6.CANopen、EtherCAT 所使用通讯网线必须要求在 5 类线或者以上等级。

4.3.2 通讯距离与波特率

CANopen 伺服驱动器:

CANopen 伺服驱动器支持不同的波特率通讯,但通讯距离受通讯电缆影响,如表 4-3-1:

表 4-3-1,CAN 通信波特率和线缆长度参考值

波特率	最大通讯长度	P09.13 设定值
20Kbit/s	2500 米	0
50 Kbit/s	1000米	1
100 Kbit/s	500 米	2
125 Kbit/s	500 米	3
250 Kbit/s	250 米	4
500 Kbit/s	100 米	5
800 Kbit/s	50 米	6
1M bit/s	25 米	7

EtherCAT 伺服驱动器:

EtherCAT 伺服驱动器固定支持 100M bit/s 通讯速率, 2 站点之间通讯最大长度 100 米

5

5 控制模式

- ◆ 5.1 伺服参数配置
- ◆ 5.2 轮廓位置模式(PP)
- ◆ 5.3 轮廓速度模式(PV)
- ◆ 5.4 轮廓转矩模式(PT)
- ◆ 5.5 回原模式(HM)
- ◆ 5.6 周期同步位置模式(CSP)
- ◆ 5.7 周期同步速度模式(CSV)
- ◆ 5.8 周期同步转矩模式(CST)
- ◆ 5.9 插补位置模式(IP)
- ◆ 5.10 探针功能
- ◆ 5.11 电子齿轮比补充说明
- ◆ 5.12 指令单位说明

5.1 伺服参数配置

使用 J3 系列总线伺服驱动器,有时候需要手动配置伺服驱动器参数,控制模式设置,可用伺服驱动器操作面板或者上位机软件 HCS Studio 设置,内容如下表 5-1 所示。

地址	名称	参数内容	出厂值
P00.01	☆料構士	フ・CANIanan/FtharCAT 労化措士	7
(2100-02h)	控制模式	7: CANopen/EtherCAT 总线模式	1
P09.00	CANI	1 127	1
(2109-01h)	CANopen 从站地址	1~127	1
P09.13	CAN	F.F001.	_
(2109-0Eh)	CANopen 波特率	5:500k	5
P09.18		1 127	1
(2109-13h)	EtherCAT 伺服站号地址	1~127	1

表 5-1 SV-J3 系列总线伺服驱动器使用预设置

5.2 轮廓位置模式(PP)

在轮廓位置模式下,驱动器控制电机可进行绝对位置定位和相对位置定位两种定位方式。上位控制器可以设置目标位置,起步速度,停止速度以及加(减)速度。启用轮廓位置模式时,将对象 6060H 设置为 1

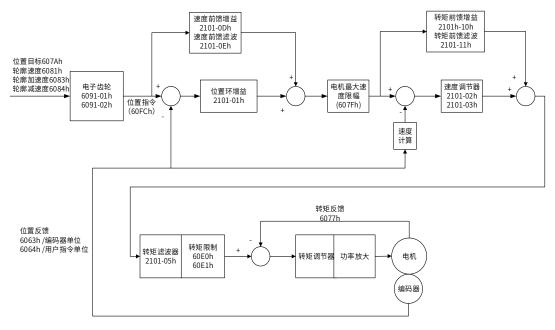


图 5-1 轮廓位置模式控制框图

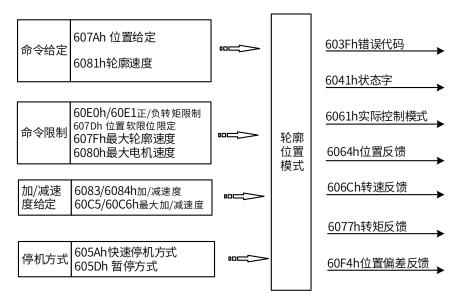
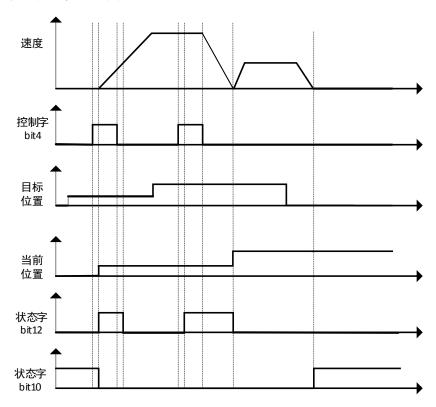


图 5-1 轮廓位置模式输入输出


5.2.1 轮廓位置模式的控制字

选择轮廓位置模式时,控制字(6040h)各个位的意义如表 5-2 所示,其中背景用深颜色标注的是轮廓位置模式专用的控制命令。

Bit	名称	说明
0	Switch on	使能伺服时必须设置为 1
1	Enable voltage	使能伺服时必须设置为 1
2	快速停机	使能伺服时必须设置为1,设置为0则快速停机
3	Operation enable	使能伺服时必须设置为 1
4	更新位置指令	在 0→1 变化时载入下一组位置指令参数(包括目标位置或位置增量,起步速度,运行速度,加减速度)
5	立即更新	0:等待当前位置指令执行完毕后再执行新指令 1:中止正在执行的指令,执行最新的位置指令
6	位置指令类型	0: 绝对值指令,1: 相对位置指令
7	故障复位	在 $0\rightarrow 1$ 变化时执行一次故障复位,如需多次复位,则产生多次 $0\rightarrow 1$ 变化。此位置 1 时,其它控制指令无效
8	暂停	0: 无效,1: 有效。有效时停止执行指令
9	PP 模式预留	暂无
10	预留	暂无
11~15	厂家自定义	暂无

表 5-2, 轮廓位置模式的控制字说明

当 6040h 控制字 bit5 是 0 时,如果变更动作中的定位数据,将等待当前位置指令执行完毕后,再执行新指令,如下图:

当 6040h 控制字 bit5 是 1 时,如果变更动作中的定位数据,将中止正在执行的指令,立即执行最新的指令,如下图:

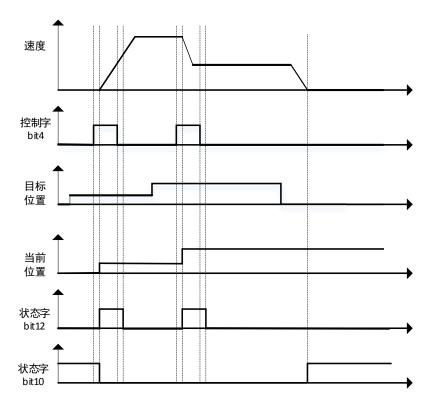


图 5-2 轮廓位置模式指令及状态更新图示

5.2.2 轮廓位置模式的状态字

选择轮廓位置模式时,状态字(6041h)各个位的意义如表 5-3 所示。其中背景用深颜色标注的是轮廓位置模式专用的状态。

表 5-3,轮廓位置模式的状态字说明

Bit	名称	说明	
0	Ready to switch on	0: 无效,1: 有效。有效时表示可以使能伺服	
1	Switched on	0: 无效,1: 有效。有效时表示可以使能伺服	
2	Operation enabled	0: 无效, 1: 有效。有效时表示伺服已使能	
3	伺服故障	0: 无故障, 1: 有故障	
4	Voltage enabled	0: 无效,1: 有效。有效时表示可以使能伺服	
5	快速停机	0: 快速停机有效,1: 快速停机无效	
6	Switch on disabled	0: 无效,1: 有效。有效时表示不可以使能伺服	
7	<u> </u>	0: 无警告, 1: 有警告	
8	厂家自定义	暂无	
9	远程控制	0: 无效,1: 有效。有效时表示控制字已生效	
10	位置到达	60400010h bit 8 (暂停)=0, 0: 位置未到达,1: 位置到达; 60400010h bit 8 (暂停)=1, 0: 减速中,1: 速度为 0	
11	内部软限位状态	0: 没有到达软限位, 1: 到达软限位	
12	 新位置指令收到状态 	0: 可以更新位置指令 1: 不可以更新位置指令	
13	位置偏差错误	0: 位置偏差值在规设定范围之内(6065h) 1: 位置偏差值超过设定范围(6065h)	
14	厂家自定义	暂无	
15	回原完成	0: 无效,1: 已完成回原点。 对于绝对值系统,P09.14 的十六进制值右起第 2 位设置为 2 后,回原点成功之后会存储 bit15 的值(掉电保持),将 P20.06 设置为 7 可清除存储值。	

5.2.3 轮廓位置模式相关对象

表 5-4 所示,列出了轮廓位置模式涉及到的字典对象。

表 5-4,轮廓位置模式相关的字典对象

索引	子索引	名称	访问类型	数据类型	默认值
603Fh		错误代码	ro	unsigned16	0
6040h		控制字	rw	unsigned16	0
6041h		状态字	ro	unsigned16	0
6060h		控制模式	rw	integer8	0
6061h		控制模式显示	ro	integer8	0
6062h		用户位置指令	ro	integer32	0
6063h		电机位置反馈	ro	integer32	0
6064h		用户位置反馈	ro	integer32	0
6065h		用户位置偏差过大阈值	rw	unsigned32	1000000
6067h		位置到达阈值	rw	unsigned32	100
6068h		位置到达时间	rw	unsigned16	1
606Bh		用户速度指令值	ro	integer32	0
606Ch		用户实际速度反馈	ro	integer32	0
607Ah		目标位置值	rw	integer32	0
607Ch		原点偏置	rw	integer32	0
607Dh	01h	软限位:最小位置限制	rw	integer32	-2147483648
	02h	软限位:最大位置限制	rw	integer32	2147483647
607Eh		指令极性	rw	unsigned8	0
6081h		轮廓速度	rw	unsigned32	100
6083h		轮廓加速度	rw	unsigned32	100
6084h		轮廓减速度	rw	unsigned32	100
60F4h		用户位置偏差	ro	integer32	0
60FCh		电机位置指令反馈	ro	integer32	0

5.2.4 轮廓位置模式使用举例

上位控制器连接伺服驱动器,运行上位控制器,其中:

表 5-6,轮廓位置模式启动及运行流程

地址	名称	值设定(10 进制数值)
60600008h	控制模式	1
607A0020h	给定位置	用户设定
60810020h	轮廓位置环下的给定速度	默认齿轮比 1:1,写入 1310720 对应转速 600rpm
	使能	任意数 →6 → 7 →15
	报警清除	任意数 →128(上升沿有效,如能清除)
60400010h	绝对位置给定(非立即更新)	$6 \rightarrow 7 \rightarrow 15 \rightarrow 31$
控制字	绝对位置给定(立即更新)	$6 \rightarrow 7 \rightarrow 47 \rightarrow 63$
	相对位置给定(非立即更新)	$6 \rightarrow 7 \rightarrow 79 \rightarrow 95$
	相对位置给定(立即更新)	$6 \rightarrow 7 \rightarrow 111 \rightarrow 127$
60830020h	轮廓加速度	默认值 13107200 指令单位/s^2
60840020h	轮廓减速度	默认值 131072000 指令单位/s^2

5.3 轮廓速度模式(PV)

在轮廓速度模式下,上位控制器可以设置目标速度和加(减)速度。启用轮廓速度模式时,将对象 6060H 设置为 3。控制框图及输入输出参见图 5-3 和图 5-4。

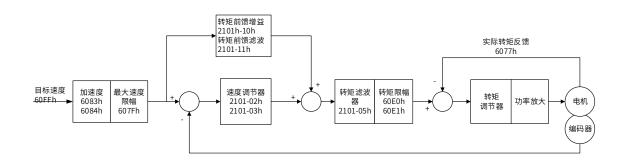


图 5-3 轮廓速度模式控制框图

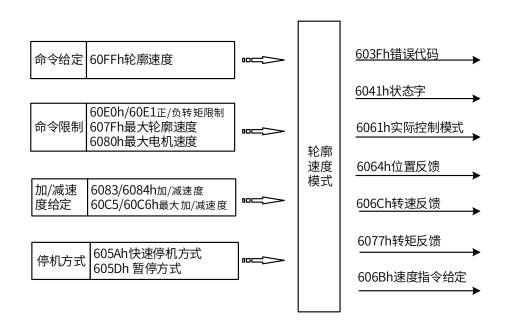


图 5-4 轮廓速度模式输入输出

5.3.1 轮廓速度模式的控制字

选择轮廓速度模式时,控制字(6040h)各个位的意义如表 5-7 所示,其中背景用深 颜色标注的是轮廓速度模式专用的控制命令。

Bit	名称	说明
0	Switch on	使能伺服时必须设置为 1。
1	Enable voltage	使能伺服时必须设置为 1。
2	快速停机	使能伺服时必须设置为 1,设置为 0 则快速停机。
3	Operation enable	使能伺服时必须设置为 1。
4~6	PV 模式预留	暂无
7	故障复位	在 0→1 变化时执行一次故障复位,如需多次复位,则需要产生多次 0→1 变化。此位置 1 时,其它控制指令无效
8	暂停	0:无效,1:有效。无效时执行指令,有效时停止
9	PV 模式预留	 哲
10	预留	暂无
11~15	厂家自定义	暂无

表 5-7 轮廓速度模式的控制字说明

5.32 轮廓速度模式的状态字

选择轮廓速度模式时,状态字(6041h)各个位的意义如表 5-8 所示。其中背景用深颜色标注的是轮廓速度模式专用的状态。

Bit	名称	说明
0	Ready to switch on	0: 无效, 1: 有效。有效时表示可以使能伺服
1	Switched on	0: 无效,1: 有效。有效时表示可以使能伺服
2	Operation enabled	0: 无效,1: 有效。有效时表示伺服已使能
3	伺服故障	0: 无故障, 1: 有故障
4	Voltage enabled	0: 无效, 1: 有效。有效时表示可以使能伺服
5	快速停机	0: 快速停机有效,1: 快速停机无效
6	Switch on disabled	0: 无效,1: 有效。有效时表示不可以使能伺服
7	<u> </u>	0: 无警告, 1: 有警告
8	厂家自定义	暂无
9	远程控制	0:无效,1:有效。有效时表示控制字已生效
10	速度到达	60400010h bit 8 (暂停)=0,
		0:速度未到达,1:速度达到;
		60400010h bit 8 (暂停)=1,
		0: 减速中,1: 速度为 0
11	内部软限位状态	0:没有到达软限位,1:到达软限位
12	零速度状态	0: 速度不等于0,1: 速度等于0
13	PV 模式预留	暂无
14~15	厂家自定义	暂无

表 5-8 轮廓速度模式的状态字说明

5.3.3 轮廓速度模式相关对象

表 5-9 所示,列出了轮廓位置模式涉及到的字典对象。

表 5-9 ,轮廓速度模式相关的字典对象

索引	子索引	名称	访问类型	数据类型	默认值
603Fh		错误代码	ro	unsigned16	0
6040h		控制字	rw	unsigned16	0
6041h		状态字	ro	unsigned16	0
6060h		控制模式	rw	integer8	0
6061h		控制模式显示	ro	integer8	0
6063h		电机位置反馈	ro	integer32	0
6064h		用户位置反馈	ro	integer32	0
606Bh		用户速度指令值	ro	integer32	0
606Ch		用户实际速度反馈	ro	integer32	0
606Dh		速度到达阈值	rw	unsigned16	100
606Eh		速度到达时间	rw	unsigned16	1
606Fh		零速阀值	rw	unsigned16	10
607Ch		原点偏置	rw	integer32	0
607Dh	01h	软限位: 最小位置限制	rw	integer32	-2147483648
	02h	软限位:最大位置限制	rw	integer32	2147483647
607Eh		指令极性	rw	unsigned8	0
6083h		轮廓加速度	rw	unsigned32	13107200
6084h		轮廓减速度	rw	unsigned32	13107200
6094h	01h	速度编码器因子: 分子	rw	unsigned32	1
	02h	速度编码器因子: 分母	rw	unsigned32	1
60C5h		最大轮廓加速度	rw	unsigned32	100000000
60C6h		最大轮廓减速度	rw	unsigned32	1000000000
60FFh		目标速度	rw	integer32	0

5.3.4 轮廓速度模式使用举例

1、设置伺服驱动器参数,运行上位控制器,其中

表 5-11,轮廓速度模式启动及运行流程

地址	名称	值设定(10 进制数值)
60600008h	控制模式	3
		默认齿轮比 1:1,写入 1310720(指令单位/s)
60FF0020h	轮廓速度给定	则对应转速 600rpm
604000101	使能	任意数→6→7→15
60400010h	报警清除	任意数 → 128(上升沿有效,如能清除)
控制字	电机转动	给定速度指令并且使能后,电机转动
60830020h	轮廓加速度	默认值 13107200 指令单位/s^2
60840020h	轮廓减速度	默认值 131072000 指令单位/s^2

5.4 轮廓转矩模式(PT)

在轮廓转矩模式下,上位控制器可以设置目标转矩和转矩指令变化率(转矩斜坡)。启用轮廓转矩模式时,将对象 6060H 设置为 4。控制框图及输入输出如图 5-5 和图 5-6 所示

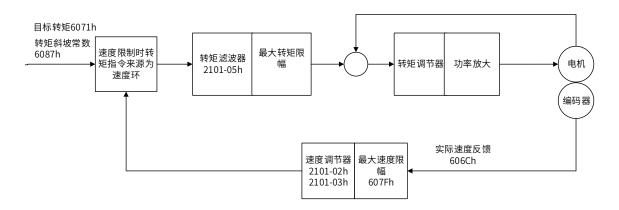


图 5-5 轮廓转矩模式控制框图

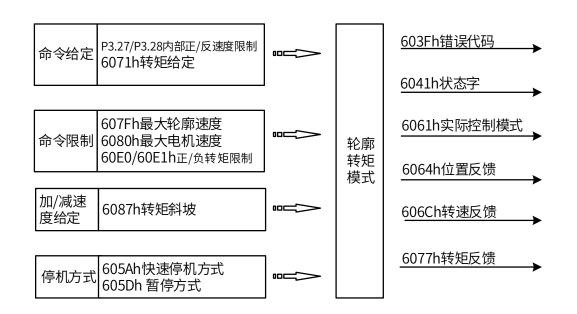


图 5-6 轮廓转矩模式输入输出

5.4.1 轮廓转矩模式的控制字

选择轮廓转矩模式时,控制字(6040h)各个位的意义如表 5-12 所示,其中背景用深 颜色标注的是轮廓转矩模式专用的控制命令。

Bit	名称	说明
0	Switch on	使能伺服时必须设置为 1。
1	Enable voltage	使能伺服时必须设置为 1。
2	快速停机	使能伺服时必须设置为 1,设置为 0 则快速停机。
3	Operation enable	使能伺服时必须设置为 1。
4~6	PT 模式预留	
7	故障复位	在 0→1 变化时执行一次故障复位,如需多次复位,则需要产生多次 0→1 变化。此位置 1 时,其它控制指令无效
8	暂停	0:无效,1:有效。无效时执行指令,有效时停止
9	PT 模式预留	暂无
10	预留	暂无
11~15	厂家自定义	暂无

表 5-12 轮廓转矩模式的控制字说明

5.4.2 轮廓转矩模式的状态字

选择轮廓转矩模式时,状态字(6041h)各个位的意义如表 5-13 所示。其中背景用深 颜色标注的是轮廓转矩模式专用的状态。

说明 名称 Bit 0 Ready to switch on 0:无效,1:有效。有效时表示可以使能伺服 0: 无效, 1: 有效。有效时表示可以使能伺服 1 Switched on 2 Operation enabled 0: 无效, 1: 有效。有效时表示伺服已使能 3 伺服故障 0:无故障,1:有故障 4 0: 无效, 1: 有效。有效时表示可以使能伺服 Voltage enabled 5 快速停机 0: 快速停机有效, 1: 快速停机无效 0: 无效, 1: 有效。有效时表示不可以使能伺服 Switch on disabled 6 7 0: 无警告, 1: 有警告 警告 8 厂家自定义 暂无 9 远程控制 0: 无效, 1: 有效。有效时表示控制字已生效 0: 转矩未到达,1: 转矩到达 10 转矩到达 11 0: 没有到达软限位,1: 到达软限位 内部软限位状态 12、13 | PT 模式预留 暂无 暂无 14、15 | 厂家自定义

表 5-13 轮廓转矩模式的状态字说明

6041h 状态字 Bit10 转矩到达与 P04.55、P04.56 参数设值有关:

转矩反馈(绝对值)≥P04.55+P04.56 时,转矩到达信号输出,bit10 置 1

转矩反馈(绝对值)<P04.55-P04.56×0.25 时,转矩到达信号不输出,bit10 清 0

5.4.3 轮廓转矩模式相关对象

表 5-14 所示,列出了轮廓位置模式涉及到的字典对象。

表 5-14,轮廓转矩模式相关的字典对象

索引	子索引	名称	访问类型	数据类型	默认值
603Fh		错误代码	ro	unsigned16	0
6040h		控制字	rw	unsigned16	0
6041h		状态字	ro	unsigned16	0
6060h		控制模式	rw	integer8	0
6061h		控制模式显示	ro	integer8	0
606Ch		用户实际速度反馈	ro	integer32	0
6071h		转矩目标值	rw	integer16	1000
6074h		用户给定转矩值	ro	integer16	0
6077h		实际转矩反馈	ro	integer16	0
607Dh	01h	软限位: 最小位置限制	rw	integer32	-2147483648
	02h	软限位:最大位置限制	rw	integer32	2147483647
6080h		最大电机转速	rw	unsigned32	5000
6087h		转矩斜坡	rw	unsigned32	0

5.4.4 轮廓转矩模式使用举例

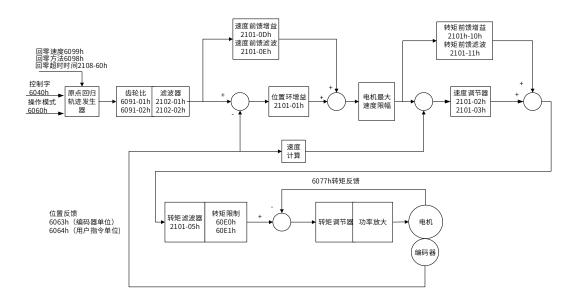
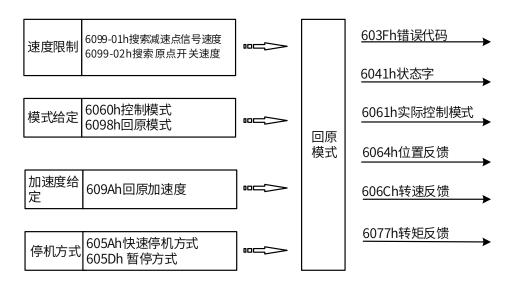

1、设置伺服驱动器参数,运行上位控制器,其中

表 5-16,轮廓转矩模式启动及运行流程


地址	名称	值设定(10 进制数值)
60600008h	控制模式	4
60800020h	轮廓转矩模式下最大转速限制	用户设定
60710010h	轮廓转矩给定	用户给定
60400010h	使能	任意数 → 6 → 7 → 15
60400010II 控制字	报警清除	任意数 → 128(上升沿有效)
1±mj 	电机转动	使能后给定指令
60870020h	转矩斜坡	用户设定(转矩模式下的加减速度)

5.5 原点回归模式(HM)

根据原点开关信号、限位开关信号和编码器 Z 信号,CiA402 协议定义了 31 种回原方式。启用此模式时,将对象 6060H 设置为 6

回原模式控制框图

原点模式输入输出图

5.5.1 原点回归模式中的控制字

选择原点回归模式时,控制字(6040h)各个位的意义如表 5-17 所示:

表 5-17 原点回归模式的控制字说明

Bit	名称	说明
0	Switch on	使能伺服时必须设置为 1。
1	Enable voltage	使能伺服时必须设置为 1。
2	快速停机	使能伺服时必须设置为 1,设置为 0 则快速停机。
3	Operation enable	使能伺服时必须设置为 1。
4	回原使能	0:无效,1:有效。有效时启动回原点流程,在回原点
		全程必须保持为有效,切换到无效则停止回原点流程
5、6	原点模式预留	暂无
7	故障复位	在 0→1 变化时执行一次故障复位。此位置 1 时,其它
		控制指令无效
8	暂停	0:无效,1:有效。有效时减速停止回原点流程。
9	原点模式预留	暂无
10	预留	暂无
11~15	厂家自定义	暂无

5.5.2 原点回归模式的状态字

选择原点回归模式时,状态字(6041h)各个位的意义如表 5-18 所示:

表 5-18 原点回归模式的状态字说明

Bit	名称	说明
0	Ready to switch on	0: 无效,1: 有效。有效时表示可以使能伺服
1	Switched on	0: 无效,1: 有效。有效时表示可以使能伺服
2	Operation enabled	0: 无效, 1: 有效。有效时表示伺服已使能
3	伺服故障	0: 无故障, 1: 有故障
4	Voltage enabled	0:无效,1:有效。有效时表示可以使能伺服
5	快速停机	0: 快速停机有效,1: 快速停机无效
6	Switch on disabled	0: 无效,1: 有效。有效时表示不可以使能伺服
7	<u> </u>	0: 无警告, 1: 有警告
8	厂家自定义	暂无
9	远程控制	0: 无效,1: 有效。有效时表示控制字已生效
10	位置到达	60400010h bit 8 (暂停)=0,
		0:位置未到达,1:位置到达;
		60400010h bit 8 (暂停)=1,
		0:减速中,1:速度为0
11	内部软限位状态	0:没有到达软限位, 1:到达软限位
12	回原点完成输出	0:回原点未完成,1:回原点完成
13	回原点错误	0:无错误,1:回原点发生错误
14	厂家自定义	暂无
15	回原完成	0: 无效,1: 已完成回原点。
		对于绝对值系统: P06.47 设 2,P09.14 的十六进制值
		右起第 2 位设置为 1, 回原成功后会存储 bit15 的值
		(掉电保持),将 P20.06 设置为 7 可清除存储值

5.5.3 原点回归模式相关对象

表 5-19 所示,列出了原点回归模式涉及到的字典对象。

表 5-19,原点回归模式相关的字典对象

索引	子索引	名称	访问类型	数据类型	默认值
603Fh		错误代码	ro	unsigned16	0
6040h		控制字	rw	unsigned16	0
6041h		状态字	ro	unsigned16	0
6060h		控制模式	rw	integer8	0
6061h		控制模式显示	ro	integer8	0
6062h		用户位置指令	ro	integer32	0
6063h		电机位置反馈	ro	integer32	0
6064h		用户位置反馈	ro	integer32	0
6065h		用户位置偏差过大阈值	rw	unsigned32	1000000000
6067h		位置到达阈值	rw	unsigned32	100
6068h		位置到达时间	rw	unsigned16	1
606Bh		用户速度指令值	ro	integer32	0
606Ch		用户实际速度反馈	ro	integer32	0
607Ch		原点偏置	rw	integer32	0
607Dh	01h	软限位:最小位置限制	rw	integer32	-2147483648
	02h	软限位:最大位置限制	rw	integer32	2147483647
6098h		回原模式	rw	integer8	0
		回原模式中搜索减速点			
6099h	01h	信号速度	rw	unsigned32	218453
		回原模式中搜索原点开			
	02h	关信号速度	rw	unsigned32	21845
609Ah		回原加速度	rw	unsigned32	1310720

5.5.4 原点回归模式使用教程

1、设置 J3E 伺服驱动器参数,配置回原 DI 相关参数(第 4 组参数:数字输入输出,具体参考 7.2 章,其中 P6.28=0),运行上位控制器,其中

表 5-21,原点回归模式启动及运行流程

地址	名称	设定值(10 进制数值)
60600008h	控制模式	6
60980008h	回原模式	1~35
60400010h	报警清除	任意数 → 128(上升沿有效)
控制字	回原	6 → 7→ 15 → 31 (回原使能 BIT4 上升 沿有效)
60990120h	回原模式中搜索减速点信号速度	默认值: 218453 (指令单位/s)
60990220h	回原模式中搜索原点开关信号速度	默认值: 21845 (指令单位/s)
609A0020h	回原加速度	默认值: 1310720 (指令单位/s^2)

5.5.5 原点回归模式介绍

CiA402 内部定义了 31 种回原方式,如下表 5-22 所述:

以下描述中以 HSW 表示原点位置传感器信号,以 NL 表示负向限位信号,以 PL 表示正向限位信号。ON 表示信号的有效状态,OFF 表示信号的无效状态。OFF→ON 表示信号从无效状态到有效状态的跳变沿,ON→OFF 表示信号从有效状态到无效状态的跳变沿。下面分别介绍各种原点模式运行轨迹和信号状态变化,图标意义如图 5-22 所示。

表 5-22 ,支持的原点模式一览表

回原方式	说明
0	无
1	起步朝负向运行,以负向运行时遇到 NL 的 OFF→ON 状态时换低速运行,然后回退找最近的
1	Z 脉冲位置作为原点
2	起步朝正向运行,正向运行时遇到 PL 的 OFF→ON 状态时换低速运行,然后回退找最近的 Z
	<u>脉冲位置作为原点</u>
3	起步时 HSW 无效则朝正向运行,否则朝负向运行。朝负向运行时遇到 HSW 的 ON→OFF 状态
	时换低速运行,然后继续负向运行找最近的 Z 脉冲位置作为原点
4	起步时 HSW 无效则朝正向运行,否则朝负向运行。朝正向运行时遇到 HSW 的 OFF→ON 状态
	<u>时换低速运行,然后继续正向运行找最近的 Z 脉冲位置作为原点</u>
5	起步时 HSW 无效则朝负向运行,否则朝正向运行。朝正向运行时遇到 HSW 的 ON→OFF 状态
	时换低速运行,然后继续正向运行找最近的 Z 脉冲位置作为原点
6	起步时 HSW 无效则朝负向运行,否则朝正向运行。朝负向运行时遇到 HSW 的 ON→OFF 状态
	时换低速运行,然后继续负向运行找最近的 Z 脉冲位置作为原点
7	起步时 HSW 无效则朝正向运行,否则朝负向运行。朝负向运行时遇到 HSW 的 ON→OFF 状态
	时换低速运行,然后继续负向运行找最近的 Z 脉冲位置作为原点
8	起步时 HSW 无效则朝正向运行,否则朝负向运行。朝正向运行时遇到 HSW 的 OFF→ON 状态
	时换低速运行,然后继续正向运行找最近的 Z 脉冲位置作为原点
9	起步时都是朝正向运行,不论 HSW 有效或无效。朝负向运行时遇到 HSW 的 OFF→ON 状态时
	换低速运行,然后继续负向运行找最近的 Z 脉冲位置作为原点
10	起步时都是朝正向运行,不论 HSW 有效或无效。朝正向运行时遇到 HSW 的 ON→OFF 状态时
	换低速运行,然后继续正向运行找最近的 Z 脉冲位置作为原点
11	起步时 HSW 无效则朝负向运行,否则朝正向运行。朝正向运行时遇到 HSW 的 ON→OFF 状态
	时换低速运行,然后继续正向运行找最近的 Z 脉冲位置作为原点
12	起步时 HSW 无效则朝负向运行,否则朝正向运行。朝负向运行时遇到 HSW 的 OFF→ON 状态
	时换低速运行,然后继续负向运行找最近的 Z 脉冲位置作为原点
13	起步时都是朝负向运行,不论 HSW 有效或无效。朝正向运行时遇到 HSW 的 OFF→ON 状态时
	换低速运行,然后继续正向运行找最近的 Z 脉冲位置作为原点
14	上步时都是朝负向运行,不论 HSW 有效或无效。朝负向运行时遇到 HSW 的 ON→OFF 状态时 换低速运行,然后继续负向运行找最近的 Z 脉冲位置作为原点
15	探 <u>区本运门,然后继续贝巴运门我取起的 Z </u>
	保留
16 17	★留 类似方式 1,但不找 Z 脉冲,以负向运行时遇到 NL 的 OFF→ON 状态位置作为原点
18	类似方式 2 ,但不找 2 脉冲,以正向运行时遇到 PL 的 $OFF \rightarrow ON$ 状态位置作为原点
19	类似方式 2 ,但个我 2 脉冲,以近向运行时遇到 PL 的 $OPF \rightarrow ON$ 状态位置作为原点 类似方式 3 ,但不找 2 脉冲,以负向运行时遇到 HSW 的 $ON \rightarrow OFF$ 状态位置作为原点
20	类似方式 3 ,但个我 2 脉冲,以页向运行时遇到 13 W 的 0 N $\rightarrow 0$ FF \downarrow
21	类似方式 4 ,但不找 2 脉冲,以正向运行时遇到 HSW 的 $ON \rightarrow OFF$ 状态位置作为原点
22	│类似方式 6,但不找 Z 脉冲,以负向运行时遇到 HSW 的 OFF→ON 状态位置作为原点

23	类似方式 7,但不找 Z 脉冲,以朝负向运行时遇到 HSW 的 ON→OFF 状态位置作为原点		
24	类似方式 8,但不找 Z 脉冲,以朝正向运行时遇到 HSW 的 OFF→ON 状态位置作为原点		
25	类似方式 9,但不找 Z 脉冲,以朝负向运行时遇到 HSW 的 OFF→ON 状态位置作为原点		
26	类似方式 10,但不找 Z 脉冲,以朝正向运行时遇到 HSW 的 ON→OFF 状态位置作为原点		
27	类似方式 11,但不找 Z 脉冲,以朝正向运行时遇到 HSW 的 ON→OFF 状态位置作为原点		
28	类似方式 12,但不找 Z 脉冲,以朝负向运行时遇到 HSW 的 OFF→ON 状态位置作为原点		
29	类似方式 13,但不找 Z 脉冲,以朝正向运行时遇到 HSW 的 OFF→ON 状态位置作为原点		
30	类似方式 14,但不找 Z 脉冲,以朝负向运行时遇到 HSW 的 ON→OFF 状态位置作为原点		
31	保留		
32	保留		
33	起步时朝负向找最近的 Z 脉冲位置作为原点		
34	起步时朝正向找最近的 Z 脉冲位置作为原点		
35	以当前位置为原点		

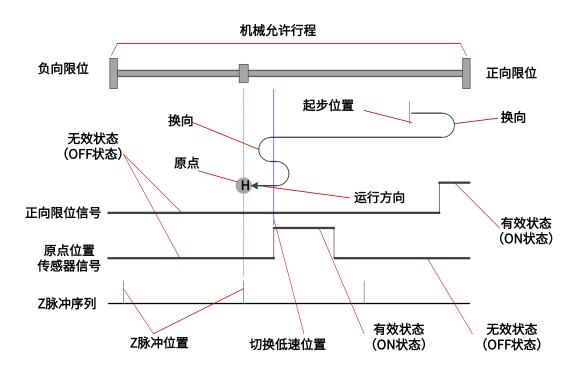


图 5-8 原点模式图示中各种图标的意义

一般的,建议将原点模式 3~6、19~22,应用在 HSW 的 OFF/ON 状态正好将整个机械允许行程范围分成两部分的情形,因为这 8 种模式下,无论何时遇到 NL 还是 PL,都是停止并报警,并不会自动反向寻找原点。

建议将原点模式 7~14、23~30,应用在 HSW 的 ON 状态正好将整个机械允许行程范围分成三部分的情形,此时 ON 状态区间只占据整个机械允许行程范围很小一部分(即 ON 状态是短时暂态)。

以上只是建议,并不是强制要求。

1、模式1,寻找负限位和 Z 脉冲

起步时如果 NL 无效,则以高速朝负向运行,遇到 NL 的 OFF \rightarrow ON 状态之后减速停止,然后换低速朝正向运行。在低速朝正向运行时遇到 NL 的 ON \rightarrow OFF 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

起步时如果 NL 有效,则以低速朝正向运行。在朝正向遇到 NL 的 ON→OFF 状态之后,继续正向找最近的 Z 脉冲位置作为原点。如图 5-9 所示,参见表 5-22。

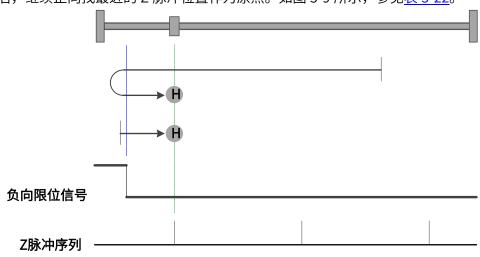


图 5-9 原点模式 1 轨迹及信号状态

2、模式 2, 寻找正限位和 Z 脉冲

起步时如果 PL 无效,则以高速朝正向运行,遇到 PL 的 OFF \rightarrow ON 状态之后减速停止,然后换低速朝负向运行。在低速朝负向运行时遇到 PL 的 ON \rightarrow OFF 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时如果 PL 有效,则以低速朝负向运行。在朝负向运行时遇到 PL 的 ON \rightarrow OFF 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。如图 5-10 所示,参见表 5-22。

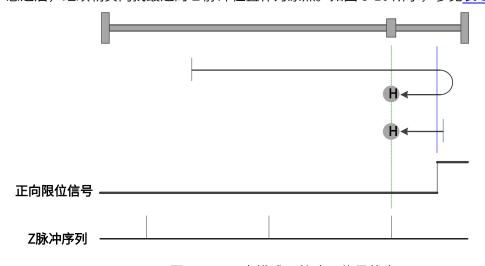


图 5-10 原点模式 2 轨迹及信号状态

3、模式 3,寻找朝负向运行时 HSW 的 ON→OFF 位置和 Z 脉冲

起步时 HSW 无效则以高速朝正向运行,在正向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后换低速朝负向运行。在低速负向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止,此后换低速朝负向运行。在低速负向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

这种模式下,无论遇到 NL 还是 PL 的 ON 状态,都是停止回原点流程并报警。 如图 5-11 所示,参见表 5-22。

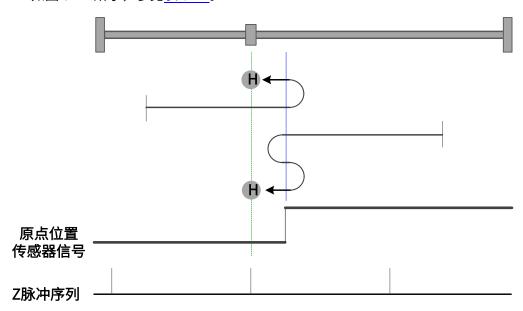


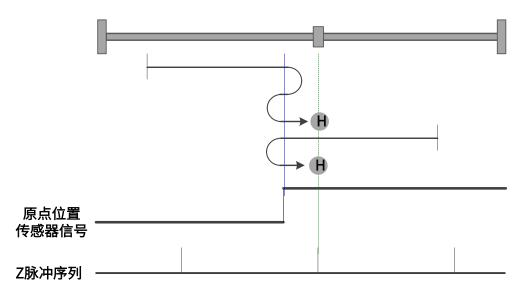
图 5-11 原点模式 3 轨迹及信号状态

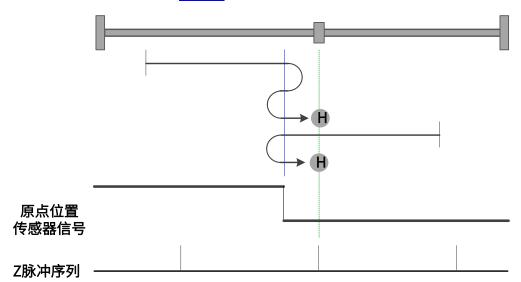
4、模式 4,寻找朝正向运行时 HSW 的 OFF→ON 位置和 Z 脉冲

起步时 HSW 无效则以高速朝正向运行,在正向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝正向运行。在低速正向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝正向运行。在低速正向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

这种模式下,无论遇到 NL 还是 PL 的 ON 状态,都是停止回原点流程并报警。 如图 5-12 所示,参见表表 5-22。




图 5-12 原点模式 4 轨迹及信号状态

5、模式 5,寻找朝正向运行时 HSW 的 ON→OFF 位置和 Z 脉冲

起步时 HSW 无效则以高速朝负向运行。在负向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后换低速朝正向运行。在低速正向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝正向运行,在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止,此后换低速朝正向运行。在低速正向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

这种模式下,无论遇到 NL 还是 PL 的 ON 状态,都是停止回原点流程并报警。 如图 5-13 所示,参见表表 5-22。

图 5-13 原点模式 5 轨迹及信号状态

6、模式 6,寻找朝负向运行时 HSW 的 OFF→ON 位置和 Z 脉冲

起步时 HSW 无效则以高速朝负向运行。在负向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝负向运行。在低速负向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝正向运行,在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

这种模式下,无论遇到 NL 还是 PL 的 ON 状态,都是停止回原点流程并报警。 如图 5-14 所示,参见表 5-22。

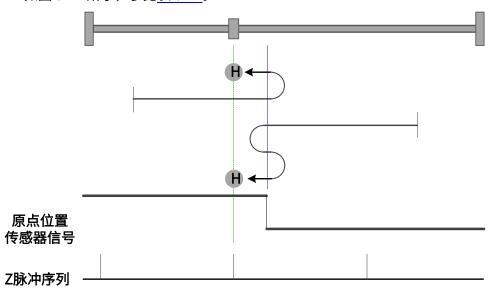


图 5-14 原点模式 6 轨迹及信号状态

7、模式 7,寻找朝负向运行时 HSW 的 ON→OFF 位置和 Z 脉冲,遇正限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝正向运行,遇到 PL 的 ON 状态时减速停止,然后以高速朝负向运行。在负向运行时遇到 HSW 的 ON →OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝负向运行。在低速负向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝正向运行,在正向运行时遇到 HSW 的 OFF \rightarrow ON 状态之后减速停止,然后换低速朝负向运行。低速负向运行时遇到 HSW 的 ON \rightarrow OFF 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝负向运行。在低速负向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

这种模式下,朝正向运行第一次遇到 PL 的 ON 状态时自动反向;遇到 NL 的 ON 状态,或者再次遇到 PL 的 ON 状态,则停止回原点流程并报警。

如图 5-15 所示,参见表 5-22。

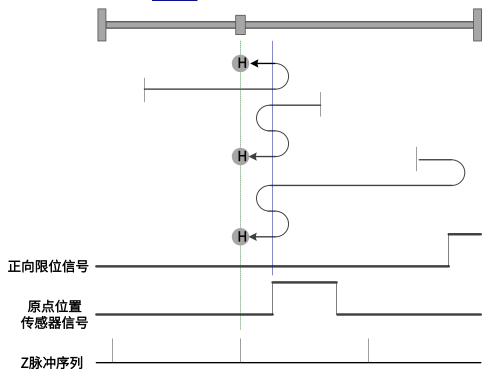


图 5-15 原点模式 7 轨迹及信号状态

8、模式 8,寻找朝正向运行时 HSW 的 OFF→ON 位置和 Z 脉冲,遇正限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝正向运行,遇到 PL 的 ON 状态时减速停止,然后以高速朝负向运行。在负向运行时遇到 HSW 的 ON →OFF 状态之后减速停止,然后换低速朝正向运行。在低速正向运行时遇到 HSW 的 OFF →ON 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝正向运行,在正向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝正向运行。在低速正向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之

后减速停止,然后换低速朝正向运行。在低速正向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

这种模式下,朝正向运行第一次遇到 PL 的 ON 状态时自动反向;遇到 NL 的 ON 状态,或者再次遇到 PL 的 ON 状态,则停止回原点流程并报警。

如图 5-16 所示,参见表 5-22。

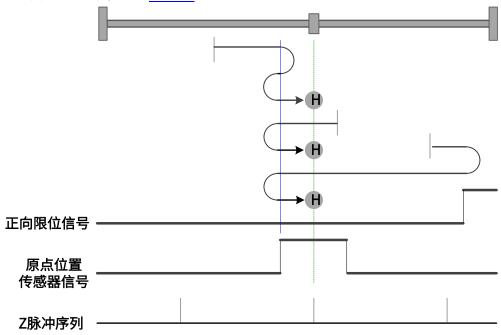


图 5-16 原点模式 8 轨迹及信号状态

9、模式 9,寻找朝负向运行时 HSW 的 OFF→ON 位置和 Z 脉冲,遇正限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝正向运行,遇到 PL 的 ON 状态时减速停止,然后以高速朝负向运行。在负向运行时遇到 HSW 的 OFF →ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝负向运行。在低速负向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝正向运行,在正向运行时遇到 HSW 的 ON \rightarrow OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行时遇到 HSW 的 OFF \rightarrow ON 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝正向运行。在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

这种模式下,朝正向运行第一次遇到 PL 的 ON 状态时自动反向; 遇到 NL 的 ON 状

态,或者再次遇到 PL 的 ON 状态,则停止回原点流程并报警。

如图 5-17 所示,参见表 5-22。

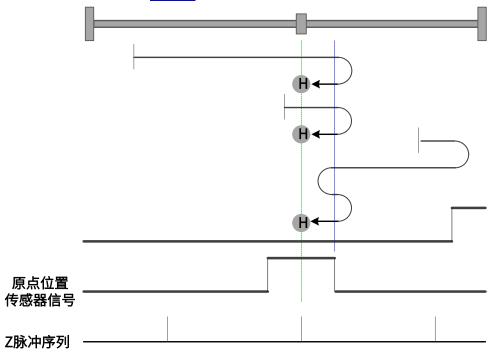


图 5-17 原点模式 9 轨迹及信号状态

10、模式 10,寻找朝正向运行时 HSW 的 ON→OFF 位置和 Z 脉冲,遇正限位自动反向 起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝正向运行, 遇到 PL 的 ON 状态时减速停止,然后以高速朝负向运行。在负向运行时遇到 HSW 的 OFF →ON 状态之后减速停止,然后换低速朝正向运行。在低速正向运行时遇到 HSW 的 ON→ OFF 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝正向运行,在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝正向运行。在低速正向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝正向运行。在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝正向运行。在低速正向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

这种模式下,朝正向运行第一次遇到 PL 的 ON 状态时自动反向;遇到 NL 的 ON 状态,或者再次遇到 PL 的 ON 状态,则停止回原点流程并报警。

如图 5-18 所示,参见表 5-22。

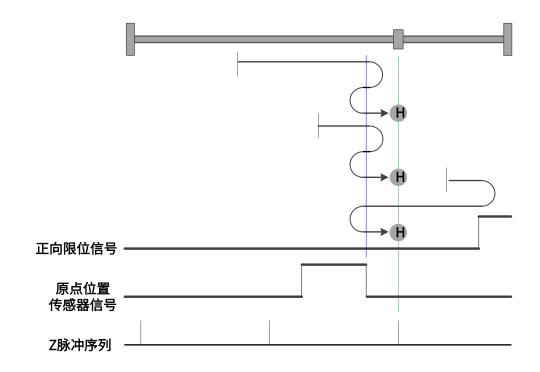


图 5-18 原点模式 10 轨迹及信号状态

11、模式 11,寻找朝正向运行时 HSW 的 ON→OFF 位置和 Z 脉冲,遇负限位自动反向 起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝负向运行, 在负向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后换低速朝正向运行。在低速 正向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝正向找最近的 Z 脉冲位置作为原 点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝负向运行,遇到 NL 的 ON 状态时减速停止,然后以高速朝正向运行。在正向运行时遇到 HSW 的 ON →OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝正向运行。在低速正向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝正向运行。在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝正向运行。在低速正向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

这种模式下,朝负向运行第一次遇到 NL 的 ON 状态时自动反向;遇到 PL 的 ON 状态,或者再次遇到 NL 的 ON 状态,则停止回原点流程并报警。

如图 5-19 所示,参见表 5-22。

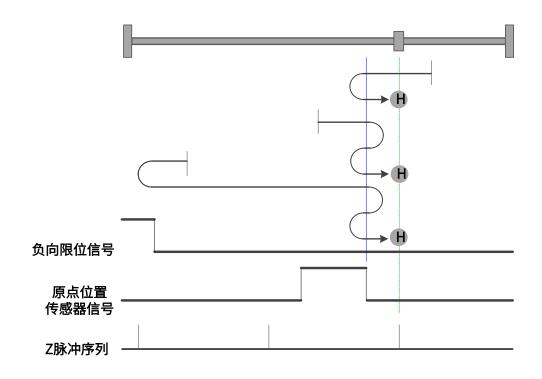


图 5-19 原点模式 11 轨迹及信号状态

12、模式 12,寻找朝负向运行时 HSW 的 OFF→ON 位置和 Z 脉冲,遇负限位自动反向 起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝负向运行, 在负向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后高速回退到 HSW 无效的位 置之后再减速停止,此后换低速朝负向运行。在低速负向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝负向运行,遇到 NL 的 ON 状态时减速停止,然后以高速朝正向运行。在正向运行时遇到 HSW 的 ON →OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行时遇到 HSW 的 OFF →ON 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝正向运行。在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

这种模式下,朝负向运行第一次遇到 NL 的 ON 状态时自动反向;遇到 PL 的 ON 状态,或者再次遇到 NL 的 ON 状态,则停止回原点流程并报警。

如图 5-20 所示,参见表 5-22。

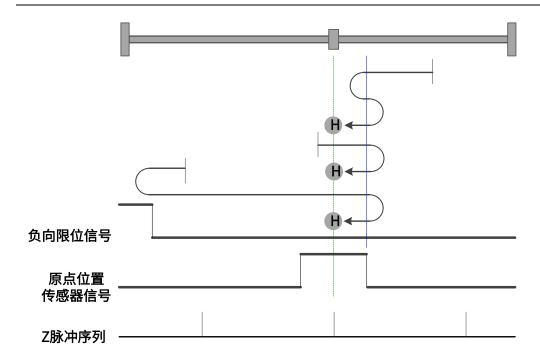


图 5-20 原点模式 12 轨迹及信号状态

13、模式 13,寻找朝正向运行时 HSW 的 OFF→ON 位置和 Z 脉冲,遇负限位自动反向 起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝负向运行, 在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝正向运行。在低速 正向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝正向找最近的 Z 脉冲位置作为原 点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝负向运行,遇到 NL 的 ON 状态时减速停止,然后以高速朝正向运行。在正向运行时遇到 HSW 的 OFF →ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝正向运行。在低速正向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝正向运行。在低速正向运行时遇到 HSW 的 OFF→ON 状态之后,继续朝正向找最近的 Z 脉冲位置作为原点。

这种模式下,朝负向运行第一次遇到 NL 的 ON 状态时自动反向;遇到 PL 的 ON 状态,或者再次遇到 NL 的 ON 状态,则停止回原点流程并报警。

如图 5-21 所示,参见表 5-22。

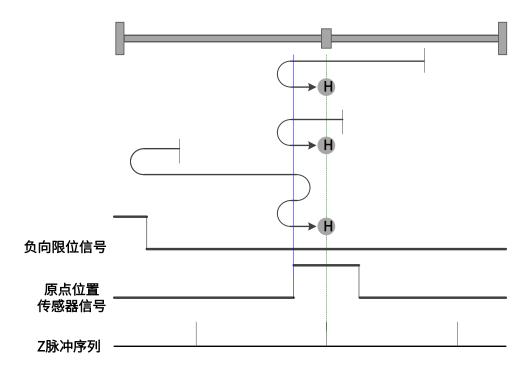


图 5-21 原点模式 13 轨迹及信号状态

14、模式 14,寻找朝负向运行时 HSW 的 ON→OFF 位置和 Z 脉冲,遇负限位自动反向 起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝负向运行, 在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位 置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区 间),此后换低速朝负向运行。在低速负向运行时遇到 HSW 的 ON→OFF 状态之后,继续 朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝负向运行,遇到 NL 的 ON 状态时减速停止,然后以高速朝正向运行。在正向运行时遇到 HSW 的 OFF →ON 状态之后减速停止,然后换低速朝负向运行。在低速负向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝负向运行。在低速负向运行时遇到 HSW 的 ON→OFF 状态之后,继续朝负向找最近的 Z 脉冲位置作为原点。

这种模式下,朝负向运行第一次遇到 NL 的 ON 状态时自动反向;遇到 PL 的 ON 状态,或者再次遇到 NL 的 ON 状态,则停止回原点流程并报警。

如图 5-22 所示,参见表 5-22。

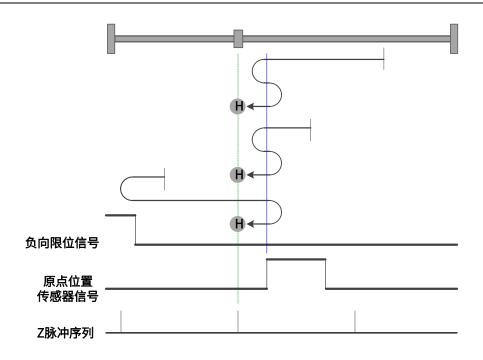


图 5-22 原点模式 14 轨迹及信号状态

- 15、模式 15, 保留, 请不要设置。
- 16、模式 16, 保留, 请不要设置。

17、模式17,寻找负限位

起步时如果 NL 无效,则以高速朝负向运行,遇到 NL 的 OFF→ON 状态之后减速停止,然后换低速朝正向运行。在低速朝正向运行遇到 NL 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时如果 NL 有效,则以低速朝正向运行。在正向运行遇到的 NL 的 ON→OFF 状态时减速停止,以停止位置作为原点。如图 5-23 所示,参见表 5-22。

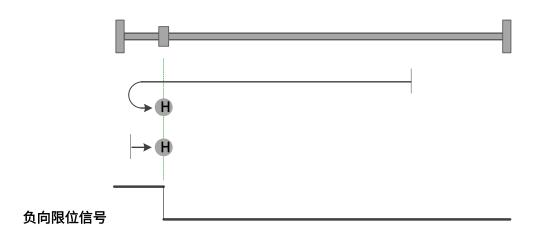


图 5-23 原点模式 17 轨迹及信号状态

18、模式 18,寻找正限位

起步时如果 PL 无效,则以高速朝正向运行,遇到 PL 的 OFF→ON 状态之后减速停止,然后换低速朝负向运行。在低速朝负向运行遇到 PL 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时如果 PL 有效,则以低速朝负向运行。在低速朝负向运行遇到 PL 的 ON→OFF 状态时减速停止,以停止位置作为原点。

如图 5-24 所示,参见表 5-22。

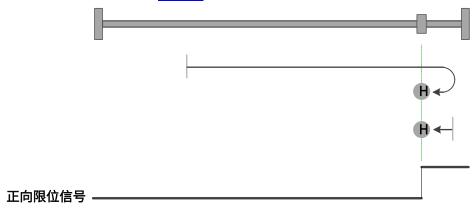


图 5-24 原点模式 18 轨迹及信号状态

19、模式 19,寻找朝负向运行时 HSW 的 ON→OFF 位置

起步时 HSW 无效则以高速朝正向运行,在正向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后换低速朝负向运行。在低速负向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止,此后换低速朝负向运行。在低速负向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

这种模式下,无论遇到 NL 还是 PL 的 ON 状态,都是停止回原点流程并报警。 如图 5-25 所示,参见表 5-22。

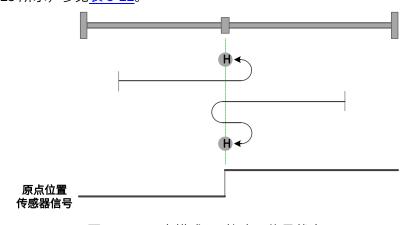


图 5-25, 原点模式 19 轨迹及信号状态

20、模式 20,寻找朝正向运行时 HSW 的 OFF→ON 位置

起步时 HSW 无效则以高速朝正向运行,在正向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝正向运行。在低速正向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝正向运行。在低速正向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

这种模式下,无论遇到 NL 还是 PL 的 ON 状态,都是停止回原点流程并报警。 如图 5-26 所示,参见表 5-22。

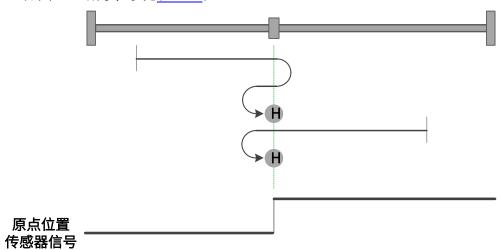


图 5-26 原点模式 20 轨迹及信号状态

21、模式 21,寻找朝正向运行时 HSW 的 ON→OFF 位置

起步时 HSW 无效则以高速朝负向运行。在负向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后换低速朝正向运行。在低速正向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝正向运行,在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止,此后换低速朝正向运行。在低速正向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

这种模式下,无论遇到 NL 还是 PL 的 ON 状态,都是停止回原点流程并报警。 如图 5-21 所示,参见表 5-22。

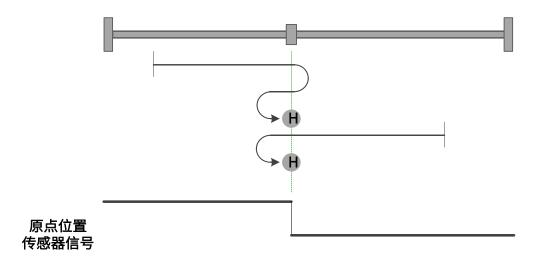


图 5-27 原点模式 21 轨迹及信号状态

22、模式 22, 寻找朝负向运行时 HSW 的 OFF→ON 位置

起步时 HSW 无效则以高速朝负向运行。在负向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝负向运行。在低速负向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝正向运行,在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

这种模式下,无论遇到 NL 还是 PL 的 ON 状态,都是停止回原点流程并报警。 如图 5-28 所示,参见表 5-22。

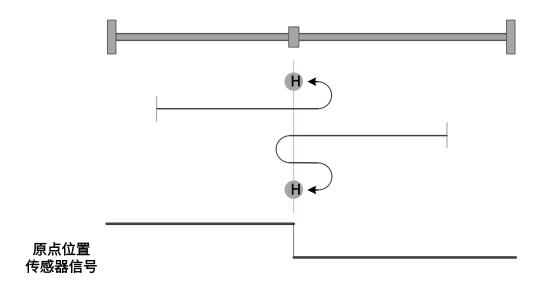


图 5-28 原点模式 22 轨迹及信号状态

23、模式 23,寻找朝负向运行时 HSW 的 ON→OFF 位置,遇正限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝正向运行,遇到 PL 的 ON 状态时减速停止,然后以高速朝负向运行。在负向运行时遇到 HSW 的 ON →OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝负向运行。在低速负向运行遇到 HSW 的 ON→OFF 时减速停止,以停止位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝正向运行,在正向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后换低速朝负向运行。在低速负向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝负向运行。在低速负向运行遇到 HSW 的 ON→OFF 时减速停止,以停止位置作为原点。

这种模式下,朝正向运行第一次遇到 PL 的 ON 状态时自动反向;遇到 NL 的 ON 状态,或者再次遇到 PL 的 ON 状态,则停止回原点流程并报警。

如图 5-29 所示,参见表 5-22。

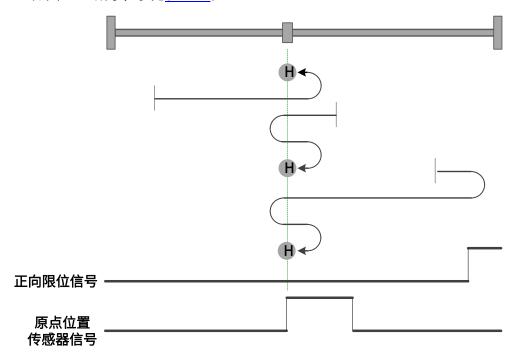


图 5-29 原点模式 23 轨迹及信号状态

24、模式 24,寻找朝正向运行时 HSW 的 OFF→ON 位置,遇正限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝正向运行,遇到 PL 的 ON 状态时减速停止,然后以高速朝负向运行。在负向运行时遇到 HSW 的 ON →OFF 状态之后减速停止,然后换低速朝正向运行。在低速正向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝正向运行,在正向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝正向运行。在低速正向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝正向运行。在低速正向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

这种模式下,朝正向运行第一次遇到 PL 的 ON 状态时自动反向;遇到 NL 的 ON 状态,或者再次遇到 PL 的 ON 状态,则停止回原点流程并报警。

如图 5-30 所示,参见表 5-22。

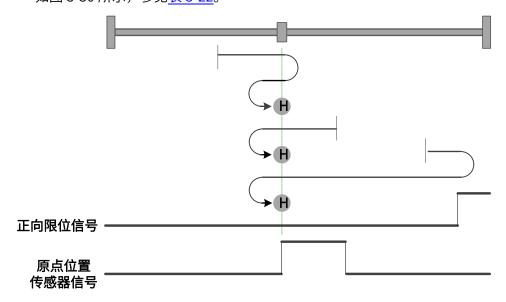


图 5-30 原点模式 24 轨迹及信号状态

25、模式 25,寻找朝负向运行时 HSW 的 OFF→ON 位置,遇正限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝正向运行, 遇到 PL 的 ON 状态时减速停止,然后以高速朝负向运行。在、负向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换 低速朝负向运行。在低速负向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝正向运行,在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝正向运行。在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

这种模式下,朝正向运行第一次遇到 PL 的 ON 状态时自动反向;遇到 NL 的 ON 状态,或者再次遇到 PL 的 ON 状态,则停止回原点流程并报警。

如图 5-31 所示,参见表 5-22。

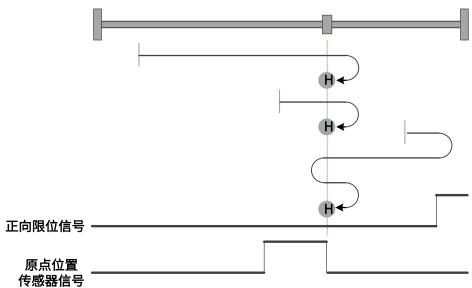


图 5-31 原点模式 25 轨迹及信号状态

26、模式 26, 寻找朝正向运行时 HSW 的 ON→OFF 位置,遇正限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝正向运行,遇到 PL 的 ON 状态时减速停止,然后以高速朝负向运行。在负向运行时遇到 HSW 的 OFF →ON 状态之后减速停止,然后换低速朝正向运行。在低速正向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝正向运行,在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝正向运行。在低速正向运行遇到 HSW 的 ON→OFF 状态时减速停止,

以停止位置作为原点。

起步时 HSW 有效则以高速朝正向运行。在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝正向运行。在低速正向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

这种模式下,朝正向运行第一次遇到 PL 的 ON 状态时自动反向;遇到 NL 的 ON 状态,或者再次遇到 PL 的 ON 状态,则停止回原点流程并报警。

如图 5-32 所示,参见表 5-22。

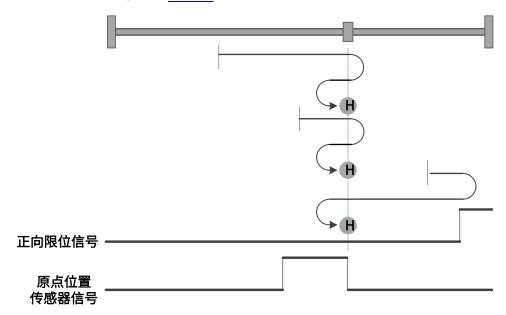


图 5-32 原点模式 26 轨迹及信号状态

27、模式 27,寻找朝正向运行时 HSW 的 ON→OFF 位置,遇负限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝负向运行, 在负向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后换低速朝正向运行。在低速 正向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝负向运行,遇到 NL 的 ON 状态时减速停止,然后以高速朝正向运行。在正向运行时遇到 HSW 的 ON →OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝正向运行。在低速正向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝正向运行。在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝正向运行。在低速正向运行

遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

这种模式下,朝负向运行第一次遇到 NL 的 ON 状态时自动反向;遇到 PL 的 ON 状态,或者再次遇到 NL 的 ON 状态,则停止回原点流程并报警。

如图 5-33 所示,参见<u>表 5-22</u>。

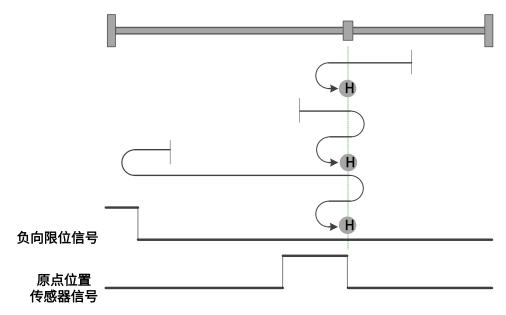


图 5-33 原点模式 27 轨迹及信号状态

28、模式 28,寻找朝负向运行时 HSW 的 OFF→ON 位置,遇负限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝负向运行,在负向运行时遇到 HSW 的 OFF→ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝负向运行。在低速负向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝负向运行,遇到 NL 的 ON 状态时减速停止,然后以高速朝正向运行。在正向运行时遇到 HSW 的 ON →OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝正向运行。在正向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝负向运行。在低速负向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

这种模式下,朝负向运行第一次遇到 NL 的 ON 状态时自动反向;遇到 PL 的 ON 状态,或者再次遇到 NL 的 ON 状态,则停止回原点流程并报警。

如图 5-34 所示,参见表 5-22。

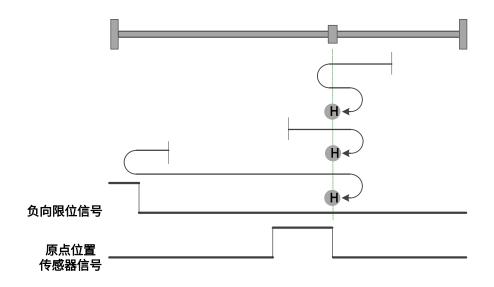


图 5-34 原点模式 28 轨迹及信号状态

29、模式 29,寻找朝正向运行时 HSW 的 OFF→ON 位置,遇负限位自动反向

起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝负向运行,在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝正向运行。在低速正向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝负向运行,遇到 NL 的 ON 状态时减速停止,然后以高速朝正向运行。在正向运行时遇到 HSW 的 OFF →ON 状态之后减速停止,然后高速回退到 HSW 无效的位置之后再减速停止,此后换低速朝正向运行。在低速正向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后换低速朝正向运行。在低速正向运行遇到 HSW 的 OFF→ON 状态时减速停止,以停止位置作为原点。

这种模式下,朝负向运行第一次遇到 NL 的 ON 状态时自动反向;遇到 PL 的 ON 状态,或者再次遇到 NL 的 ON 状态,则停止回原点流程并报警。

如图 5-35 所示,参见<u>表 5-22</u>。

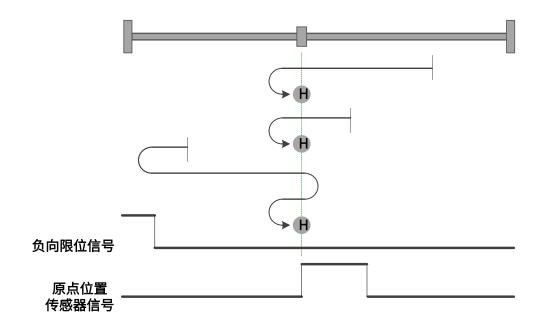
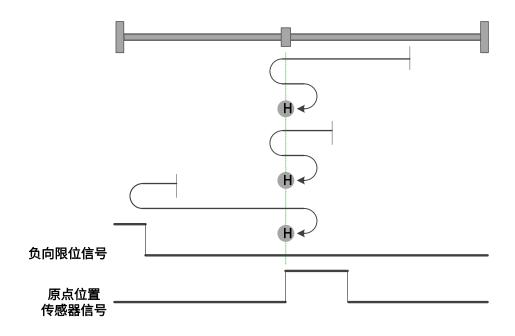


图 5-35 原点模式 29 轨迹及信号状态

30、模式 30,寻找朝负向运行时 HSW 的 ON→OFF 位置,遇负限位自动反向


起步时 HSW 无效且位于原点位置传感器所在位置的正向侧,则以高速朝负向运行,在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝负向运行。在低速负向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时 HSW 无效且位于原点位置传感器所在位置的负向侧,则以高速朝负向运行,遇到 NL 的 ON 状态时减速停止,然后以高速朝正向运行。在正向运行时遇到 HSW 的 OFF →ON 状态之后减速停止,然后换低速朝负向运行。在低速负向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

起步时 HSW 有效则以高速朝负向运行。在负向运行时遇到 HSW 的 ON→OFF 状态之后减速停止,然后高速回退到 HSW 有效的位置之后再减速停止(如果 HSW 有效的区间很窄,则可能进入另一侧 HSW 无效的位置区间),此后换低速朝负向运行。在低速负向运行遇到 HSW 的 ON→OFF 状态时减速停止,以停止位置作为原点。

这种模式下,朝负向运行第一次遇到 NL 的 ON 状态时自动反向;遇到 PL 的 ON 状态,或者再次遇到 NL 的 ON 状态,则停止回原点流程并报警。

如图 5-36 所示,参见表 5-22。

- 31、模式 31, 保留, 请不要设置。
- 32、模式 32, 保留,请不要设置。

33、模式 33, 寻找负向运行时最近的 Z 脉冲

起步时以低速朝负向找最近的 Z 脉冲位置作为原点。如果朝负向运行在找到 Z 脉冲之前就遇到 NL 的 ON 状态,则减速停止,然后朝正向运行找最近的 Z 脉冲位置作为原点。

这种模式下,朝负向运行第一次遇到 NL 的 ON 状态时自动反向;再次遇到 NL 的 ON 状态,则停止回原点流程并报警。

如图 5-37 所示,参见表 5-22。

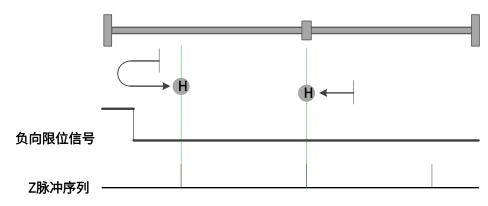


图 5-37 原点模式 33 轨迹及信号状态

34、模式 34, 寻找正向运行时最近的 Z 脉冲

起步时以低速朝正向找最近的 Z 脉冲位置作为原点。如果朝正向运行在找到 Z 脉冲之前就遇到 PL 的 ON 状态,则减速停止,然后朝负向运行找最近的 Z 脉冲位置作为原点。

这种模式下,朝正向运行第一次遇到 PL 的 ON 状态时自动反向;再次遇到 PL 的 ON 状态,则停止回原点流程并报警。

如图 5-38 所示,参见表 5-22。

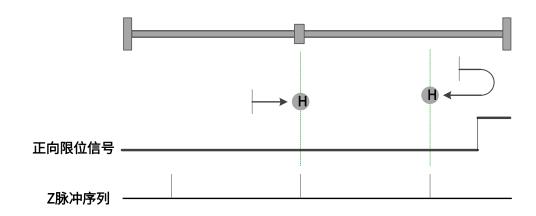


图 5-38 原点模式 34 轨迹及信号状态

5.6 周期同步位置模式(CSP)

在周期同步位置模式下,上位控制器负责规划到达目标位置的起步速度和停止速度,以及加(减)速度,在每个同步周期给定绝对目标位置,伺服驱动器则跟随目标位置运行。启用周期同步位置模式时,将对象 6060H 设置为 8。此模式适用于 EtherCAT,控制框图及输入输出如图 5-41 和图 5-42 所示。

注意: 1.其他模式切入 CSP 模式,需要等待 20ms 之后再进行位置更新;

2.CSP 模式上使能之前,请将 607Ah(位置指令值)跟随 6064h(位置反馈值),否则请将 P09.17 右起第一位设为 0,以保证机器使用安全。

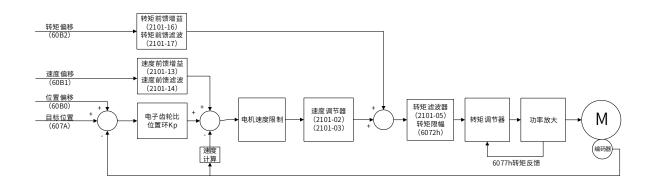


图 5-41 周期同步位置模式控制框图

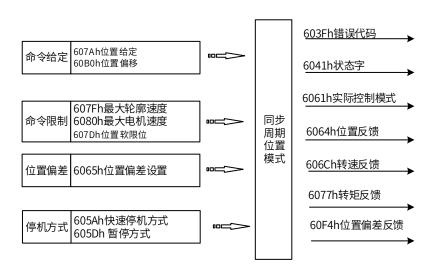


图 5-42 周期同步位置模式输入输出

5.6.1 周期同步位置模式的控制字

选择周期同步位置模式时,控制字(6040h)各个位的意义如表 5-28 所示。

表 5-28 周期同步位置模式的控制字说明

Bit	名称	说明
0	Switch on	使能伺服时必须设置为 1。
1	Enable voltage	使能伺服时必须设置为 1。
2	快速停机	使能伺服时必须设置为 1,设置为 0 则快速停机。
3	Operation enable	使能伺服时必须设置为 1。
4~6	CSP 模式预留	暂无
7	故障复位	在 0→1 变化时执行一次故障复位,如需多次复位,则需要产生多次 0→1 变化。此位置 1 时,其它控制指令无效
8	暂停	0: 无效,1: 有效。有效时停止执行指令
9	CSP 模式预留	暂无
10	预留	
11~15	厂家自定义	暂无

5.6.2 周期同步位置模式的状态字

选择周期同步位置模式时,状态字(6041h)各个位的意义如表 5-29 所示。其中背景 用深颜色标注的是周期同步位置模式专用的状态。

表 5-29 周期同步位置模式的状态字说明

Bit	名称	说明
0	Ready to switch on	0: 无效,1: 有效。有效时表示可以使能伺服
1	Switched on	0: 无效,1: 有效。有效时表示可以使能伺服
2	Operation enabled	0:无效,1:有效。有效时表示伺服已使能
3	伺服故障	0: 无故障, 1: 有故障
4	Voltage enabled	0: 无效,1: 有效。有效时表示可以使能伺服
5	快速停机	0: 快速停机有效,1: 快速停机无效
6	Switch on disabled	0: 无效,1: 有效。有效时表示不可以使能伺服
7	<u> </u>	0: 无警告, 1: 有警告
8	厂家自定义	暂无
9	远程控制	0: 无效,1: 有效。有效时表示控制字已生效
10	位置到达	60400010h bit 8 (暂停)=0, 0: 位置未到达,1: 位置到达; 60400010h bit 8 (暂停)=1, 0: 减速中,1: 速度为 0
11	内部软限位状态	0: 没有到达软限位, 1: 到达软限位
12	是否跟随目标位置	0: 未跟随目标位置 ,1: 已跟随目标位置
13	跟随位置误差报警	0: 无位置偏差报警 ,1: 发生位置偏差报警
14	厂家自定义	暂无
15	回原点完成	0:无效,1:已完成回原点。 对于绝对值系统 P06.47 设 2,P09.14 十六进制值右起 第 2 位设置为 1 后,回原点成功之后会存储 bit15 的值 (掉电保持),将 P20.06 设置为 7 可清除存储值。

5.6.3 周期同步位置模式相关对象

表 5-30,周期同步位置模式相关的字典对象

索引	子索引	名称	访问类型	数据类型	默认值
603Fh		错误代码	ro	unsigned16	0
6040h		控制字	rw	unsigned16	0
6041h		状态字	ro	unsigned16	0
6060h		控制模式	rw	integer8	0
6061h		控制模式显示	ro	integer8	0
6062h		用户位置指令	ro	integer32	0
6063h		电机位置反馈	ro	integer32	0
6064h		用户位置反馈	ro	integer32	0
6065h		用户位置偏差过大阈值	rw	unsigned32	100000000
6067h		位置到达阈值	rw	unsigned32	100000000
6068h		位置到达时间	rw	unsigned16	0
606Bh		用户速度指令值	ro	integer32	0
606Ch		用户实际速度反馈	ro	integer32	0
607A		目标位置	rw	integer32	0
607Ch		原点偏置	rw	integer32	0
607Dh	01h	软限位: 最小位置限制	rw	integer32	-2147483648
	02h	软限位:最大位置限制	rw	integer32	2147483647
60B0h		位置偏置	rw	integer32	0
60B1h		速度偏置	rw	integer32	0
60B2h		转矩偏置	rw	integer32	0
60F4h		用户位置偏差	ro	integer32	0
60FCh		电机位置指令反馈	ro	integer32	0

5.6.4 周期同步位置模式使用举例

- 1、上位控制器连接伺服驱动器,设置通讯参数(通讯同步循环周期、运控轴参数等)
- 2、运行上位控制器,其中

表 5-32 ,周期同步位置模式启动及运行流程

地址	名称	值设定(10 进制数值)		
60600008h	控制模式	8		
60400010h	使能	任意数 → 6 → 7 → 15 或 MC_Power		
60400010H 控制字	报警清除	任意数 → 128(上升沿有效,如能清除)		
江町一	轴错误复位	上位机给定或者 PLC 给定指令 MC_Reset		
	给定位置	上位控制器规划给定(包括加减速度等,主要包括如下)		
	模拟速度控制	上位机给定,PLC 给定指令 MC_MoveVelocity		
607A0020h	相对位置给定	上位机给定,PLC 给定指令 MC_MoveRelative		
001A002011	增量位置给定	上位机给定,PLC 给定指令 MC_MoveAdditive		
	绝对位置给定	上位机给定,PLC 给定指令 MC_MoveAbsolute		
	轴减速停止	上位机给定,PLC 给定指令 MC_Stop		
	同步周期时间	上位机设定(DC-SYnchro)		

5.7 周期同步速度模式(CSV)

在周期同步速度模式下,上位控制器负责规划到达目标速度的加(减)速度,在每个同步周期给定目标速度,伺服驱动器则跟随目标速度运行。启用周期同步速度模式时,将对象 6060H 设置为 9。控制框图及输入输出如图 5-43 和图 5-44 所示。

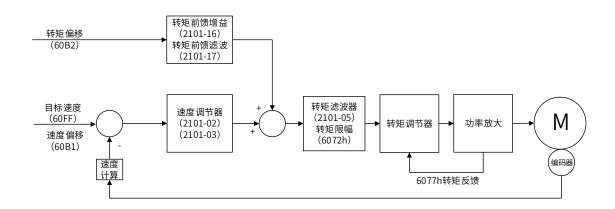


图 5-43 周期同步速度模式控制框图

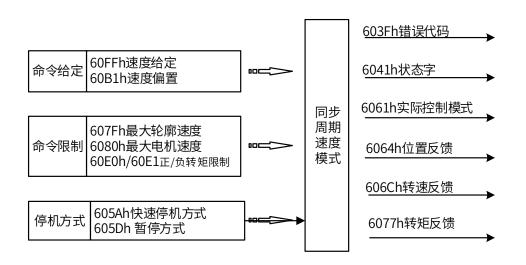


图 5-44 周期同步速度模式输入输出

5.7.1 周期同步速度模式控制字

选择周期同步速度模式时,控制字(6040h)各个位的意义如表 5-33 所示。

表 5-33 周期同步速度模式的控制字说明

Bit	名称	说明
0	Switch on	使能伺服时必须设置为 1。
1	Enable voltage	使能伺服时必须设置为 1。
2	快速停机	使能伺服时必须设置为 1,设置为 0 则快速停机。
3	Operation enable	使能伺服时必须设置为 1。
4~6	CSV 模式预留	暂无
7	故障复位	在 0→1 变化时执行一次故障复位,如需多次复位,则需要产生多次 0→1 变化。此位置 1 时,其它控制指令无效
8	暂停	0:无效,1:有效。有效时停止执行指令
9	CSV 模式预留	暂无
10	预留	暂无
11~15	厂家自定义	暂无

5.7.2 周期同步速度模式的状态字

选择周期同步速度模式时,状态字(6041h)各个位的意义如表 5-72 所示。其中背景 用深颜色标注的是周期同步速度模式专用的状态。

表 5-72 周期同步速度模式的状态字说明

Bit	名称	说明
0	Ready to switch on	0: 无效,1: 有效。有效时表示可以使能伺服
1	Switched on	0: 无效,1: 有效。有效时表示可以使能伺服
2	Operation enabled	0: 无效,1: 有效。有效时表示伺服已使能
3	伺服故障	0: 无故障, 1: 有故障
4	Voltage enabled	0: 无效,1: 有效。有效时表示可以使能伺服
5	快速停机	0: 快速停机有效,1: 快速停机无效
6	Switch on disabled	0: 无效,1: 有效。有效时表示不可以使能伺服
7	<u> </u>	0: 无警告, 1: 有警告
8	厂家自定义	暂无
9	远程控制	0: 无效,1: 有效。有效时表示控制字已生效
10	CSV 模式预留	暂无
11	内部软限位状态	0: 没有到达软限位, 1: 到达软限位
12	是否跟随目标速度	0: 未跟随目标速度,1: 已跟随目标速度
13	CSV 模式预留	暂无
14~15	厂家自定义	暂无

5.7.3 周期同步速度模式相关对象

表 5-73,周期同步速度模式相关的字典对象

索引	子索引	名称	访问类型	数据类型	默认值
603Fh		错误代码	ro	unsigned16	0
6040h		控制字	rw	unsigned16	0
6041h		状态字	ro	unsigned16	0
6060h		控制模式	rw	integer8	0
6061h		控制模式显示	ro	integer8	0
6063h		电机位置反馈	ro	integer32	0
6064h		用户位置反馈	ro	integer32	0
606Bh		用户速度指令值	ro	integer32	0
606Ch		用户实际速度反馈	ro	integer32	0
606Dh		速度到达阈值	rw	unsigned16	65535
606Eh		速度到达时间	rw	unsigned16	0
606Fh		零速阀值	rw	unsigned16	65535
607Ch		原点偏置	rw	integer32	0
607Dh	01h	软限位:最小位置限制	rw	integer32	-2147483648
	02h	软限位:最大位置限制	rw	integer32	2147483647
607Eh		指令极性	rw	unsigned8	0
6083h		轮廓加速度	rw	unsigned32	13107200
6084h		轮廓减速度	rw	unsigned32	13107200
60C5h		最大轮廓加速度	rw	unsigned32	1000000000
60C6h		最大轮廓减速度	rw	unsigned32	100000000
60B1h		转速偏置	rw	unsigned32	0
60B2h		转矩偏置	Rw	unsigned32	0
60FFh		目标速度	rw	integer32	0

5.7.4 周期同步速度模式使用举例

- 1、上位控制器连接伺服驱动器,设置通讯参数(通讯同步循环周期、运控轴参数等)
- 2、运行上位控制器,按表 5-74 列出的各项进行操作。

表 5-74

地址	名称	值设定(10 进制数值)			
60600008h	控制模式	9			
60400010h	使能	任意数 → 6 → 7 → 15 或 MC_Power			
60400010II 控制字	报警清除	任意数 → 128(上升沿有效,如能清除)			
在中1 子 	轴错误复位	上位机给定,PLC 给定指令 MC_Reset			
	给定速度	上 位 机 给 定 , PLC 给 定 指 令 MC_SyncMoveVelocity			
60FF0020h	轴减速停止	上位机给定,PLC 给定指令 MC_Stop			
同步周期时间(DC)		上位机设定			

5.8 周期同步转矩模式(CST)

在周期同步转矩模式下,上位控制器负责规划到达目标转矩的转矩斜坡变化率,在每个同步周期给定目标转矩,伺服驱动器则跟随目标转矩运行。启用周期同步转矩模式时,将对象 6060H 设置为 10。此模式适用于 EtherCAT,控制框图及输入输出如图 5-45 和图 5-46 所示。



图 5-45 周期同步转矩模式控制框图

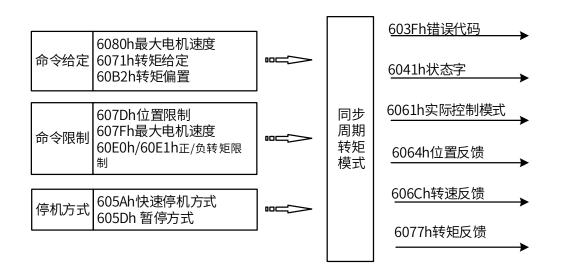


图 5-46 周期同步转矩模式输入输出

5.8.1 周期同步转矩模式的控制字

选择周期同步转矩模式时,控制字(6040h)各个位的意义如表 5-38 所示。

Bit	名称	说明
0	Switch on	使能伺服时必须设置为 1。
1	Enable voltage 使能伺服时必须设置为 1。	
2	快速停机	使能伺服时必须设置为 1,设置为 0 则快速停机。
3	Operation enable	使能伺服时必须设置为 1。
4~6	CST 模式预留	暂无
7	故障复位	在 0→1 变化时执行一次故障复位,如需多次复位,则需要产生多次 0→1 变化。此位置 1 时,其它控制指令无效
8	暂停 0: 无效,1: 有效。有效时停止执行指令	
9~10	CST 模式预留	暂无
10	预留	暂无
11~15	厂家自定义	暂无

表 5-38 周期同步转矩模式的控制字说明

5.8.2 周期同步转矩模式的状态字

选择周期同步转矩模式时,状态字(6041h)各个位的意义如表 5-39 所示。其中背景 用深颜色标注的是周期同步转矩模式专用的状态。

Bit	名称	说明
0	Ready to switch on	0: 无效,1: 有效。有效时表示可以使能伺服
1	Switched on	0: 无效,1: 有效。有效时表示可以使能伺服
2	Operation enabled	0: 无效,1: 有效。有效时表示伺服已使能
3	伺服故障	0: 无故障, 1: 有故障
4	Voltage enabled	0: 无效,1: 有效。有效时表示可以使能伺服
5	快速停机	0: 快速停机有效,1: 快速停机无效
6	Switch on disabled	0: 无效,1: 有效。有效时表示不可以使能伺服
7	<u> </u>	0: 无警告, 1: 有警告
8	厂家自定义	暂无
9	远程控制	0:无效,1:有效。有效时表示控制字已生效
10	预留	暂无
11	内部软限位状态	0:没有到达软限位, 1: 到达软限位
12	是否跟随目标转矩	0: 未跟随目标转矩,1: 已跟随目标转矩
13	CST 模式预留	暂无
14~15	厂家自定义	暂无

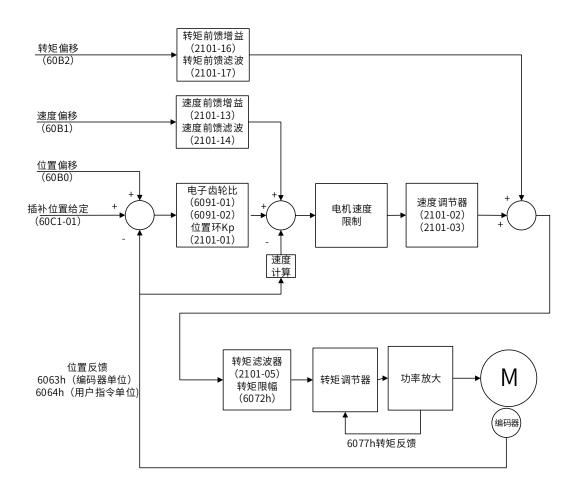
表 5-39 周期同步转矩模式的状态字说明

5.8.3 周期同步转矩模式相关对象

表 5-40 ,周期同步转矩模式相关的字典对象

索引	子索引	名称	访问类型	数据类型	默认值
603Fh		错误代码	ro	unsigned16	0
6040h		控制字	rw	unsigned16	0
6041h		状态字	ro	unsigned16	0
6060h		控制模式	rw	integer8	0
6061h		控制模式显示	ro	integer8	0
606Ch		用户实际速度反馈	ro	integer32	0
6071h		转矩目标值	rw	integer16	0
6074h		用户给定转矩值	ro	integer16	0
6077h		实际转矩反馈	ro	integer16	0
607Dh	01h	软限位: 最小位置限制	rw	integer32	-2147483648
	02h	软限位:最大位置限制	rw	integer32	2147483647
607Fh		最大轮廓转速	rw	unsigned32	5000
6087h		转矩斜坡时间	rw	unsigned32	0

5.8.4 周期同步转矩模式的简单使用举例


- 1、上位控制器连接伺服驱动器,设置通讯参数(通讯同步循环周期、运控轴参数等)
- 2、运行上位控制器,按下表列出的各项进行操作。

周期同步转矩模式启动及运行流程

地址	名称	值设定(10 进制数值)	
60600008h	控制模式	10(16 进制时为 A)	
60710010h	<i>妹怎心</i> 商商经常	用户给定 PLC 给定指令 MC_TorqueControl	
607F0020h	转矩/速度给定		
60400010h	使能	任意数→6→7→15/MC_Power	
	报警清除	任意数 → 128(上升沿有效,如能清除)	
	轴错误复位	上位机给定,PLC 给定指令 MC_Reset	
	周期同步时间(DC)	上位机设定	

5.9 插补位置模式(IP)

插补位置模式只支持同步更新指令,目前不支持异步更新指令。其位置指令经过上位 控制器处理,周期性地发送给伺服驱动器,不是像轮廓位置控制模式一次给定最终的目标 位置。此模式能够实现单轴或者多轴的同步运动,适用于对同步要求较高的场合。启用插 补位置模式时,将对象 6060H 设置为 7,此模式适用于 CANopen 通信。插补模式的输入 输出如图 5-47 所示,图 5-48 展示了单轴线性插补位置的计算过程。如果同步跟新插补位 置,则图中所示插补周期即为同步周期。

插补位置控制框图

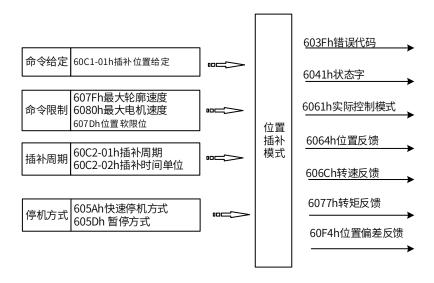


图 5-47 插补位置模式输入输出图

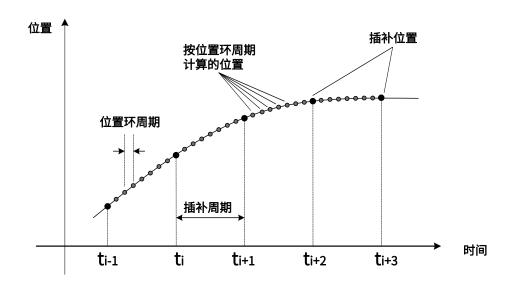


图 5-48, 单轴线性插补

5.9.1 插补位置模式的控制字

选择插补位置模式时,控制字(6040h)各个位的意义如表 5-41 所示,其中背景用深颜色标注的是插补位置模式专用的控制命令。

Bit	名称	说明
0	Switch on	使能伺服时必须设置为 1。
1	Enable voltage	使能伺服时必须设置为 1。
2	快速停机	使能伺服时必须设置为 1,设置为 0 则快速停机。

表 5-41 插补位置模式的控制字说明

3	Operation enable	使能伺服时必须设置为 1。
4	使能插补位置模式	0: 使能无效 1: 使能有效(插补全程必须为高电平)
5, 6	IP 模式预留	暂无
	故障复位	在 0→1 变化时执行一次故障复位,如需多次复位,则
7		需要产生多次 0→1 变化。此位置 1 时,其它控制指令
		无效
8	暂停	0: 无效,1: 有效。有效时停止执行指令
9	IP 模式预留	暂无
10	预留	暂无
11~15	厂家自定义	暂无

5.9.2 插补位置模式的状态字

选择插补位置模式时,状态字(6041h)各个位的意义如表 5-24 所示。其中背景用深颜色标注的是插补位置模式专用的状态。

表 5-42 插补位置模式的状态字说明

Bit	名称	说明			
0	Ready to switch on	0: 无效, 1: 有效。有效时表示可以使能伺服			
1	Switched on	0: 无效,1: 有效。有效时表示可以使能伺服			
2	Operation enabled): 无效, 1: 有效。有效时表示伺服已使能			
3	伺服故障	0: 无故障, 1: 有故障			
4	Voltage enabled	0: 无效,1: 有效。有效时表示可以使能伺服			
5	快速停机	0: 快速停机有效,1: 快速停机无效			
6	Switch on disabled	0: 无效, 1: 有效。有效时表示不可以使能伺服			
7	警告	0: 无警告, 1: 有警告			
8	厂家自定义	暂无			
9	远程控制	0: 无效,1: 有效。有效时表示控制字已生效			
10	位置到达	60400010h bit 8 (暂停)=0, 0: 位置未到达,1: 位置到达; 60400010h bit 8 (暂停)=1, 0: 减速中,1: 速度为 0			
11	内部软限位状态	0:没有到达软限位, 1: 到达软限位			
12	插补位置模式状态	0: 插补位置模式无效 1: 插补位置模式有效			

13	IP 模式预留	暂无
14	厂家自定义	暂无
	回原点完成	0: 无效,1: 已完成回原点。
15		对于绝对值系统,P09.14 的十六进制值右起第 2 位设
15		置为 2 后, 回原点成功之后会存储 bit15 的值(掉电保
		持),将 P20.06 设置为 7 可清除存储值。

5.9.3 插补位置模式相关对象

表 5-43,插补位置模式相关的字典对象

索引	子索引	名称		数据类型	 默认值
	」がコ	1117	別的天主	双1位大王	赤八八旦
603Fh		错误代码	ro	unsigned16	0
6040h		控制字	rw	unsigned16	0
6041h		状态字	ro	unsigned16	0
6060h		控制模式	rw	integer8	0
6061h		控制模式显示	ro	integer8	0
6062h		用户位置指令	ro	integer32	0
6063h		电机位置反馈	ro	integer32	0
6064h		用户位置反馈	ro	integer32	0
6065h		用户位置偏差过大阈值	rw	unsigned32	1000000
6067h		位置到达阈值	rw	unsigned32	100
6068h		位置到达时间	rw	unsigned16	1
606Bh		用户速度指令值	ro	integer32	0
606Ch		用户实际速度反馈	ro	integer32	0
607Ch		原点偏置	rw	integer32	0
607Dh	01h	软限位:最小位置限制	rw	integer32	-2147483648
	02h	软限位:最大位置限制	rw	integer32	2147483647
60C1h	01h	插补位移	rw	integer32	0
60C2h	01h	插补时间单位	rw	unsigned8	1
	02h	插补时间索引	rw	integer8	-3
60F4h		用户位置偏差	ro	integer32	0
60FCh		电机位置指令反馈	ro	integer32	0

5.9.4 插补位置模式使用举例

1、设置伺服驱动器参数

表 5-44,运行插补位置模式时的伺服驱动器参数配置

参数地址	设定值	说明
P00.01(2100-02h)	7	CANopen 模式
P09.00(2109-01h)	1	从站地址(默认为 1)
P09.13(2109-0Eh)	5	波特率(默认为 500K)

- 2、上位控制器连接伺服驱动器,设置 CANopen 通讯参数、插补模式相关参数(传输模式、插补周期、轴参数等)
- 3、运行上位控制器,其中

表 5-45, 插补位置模式启动及运行流程

地址	名称	值设定(10 进制数值)
60600008h	控制模式	7
60C10120h	插补给定位置	上位控制器规划给定
604000101	使能	任意数 →6 →7 → 31
60400010h	报警清除	任意数 → 128(上升沿有效,如能清除)
控制字	使能插补位置模式	使能给定指令
60C20108h	插补时间单位	≥1(单位: ms)

5.10 探针功能

探针功能是指伺服驱动器根据外部指定的 DI 信号或者电机 Z 信号化生变化时候,记录当时的位置信息(指令单位),并存到指定的寄存器的功能,使用注意以下:

- 1. 同一探针情况下,尽量避免同时使用上升沿和下降沿
- 2. 使用 Z 信号时,只能使用上升沿,不能使用下降沿
- 3. 单次触发探针,如果需要再次单次触发,请先将 60B8h 清 0 后再设定值

表 5-46 探针功能说明 1

	衣 5-40 採钉划[
Bit	探针功能(60B8h)	探针状态字(60B9h)
	探针 1 使能	探针1使能
0	0: 不使能探针 1	0: 不使能探针 1
	1: 使能探针 1	1: 使能针 1
	探针 1 触发模式	探针 1 上升沿锁存
1	0: 单次触发	0:未执行探针1上升沿锁存
	1: 连续触发	1:已执行探针1上升沿锁存
	探针 1 触发信号选择	探针 1 下降沿锁存
2	0: DI3 触发	0:未执行探针1下降沿锁存
	1: Z信号触发	1:已执行探针1下降沿锁存
3	保留	保留
	探针 1 上升沿锁存	
4	0:不使用探针1上升沿锁存	保留
	1: 使用探针 1 上升沿锁存	
	探针1下降沿锁存	
5	0:不使用探针1下降沿锁存	保留
	1: 使用探针 1 下降沿锁存	
		探针 1 触发信号选择
6	保留	0: 为 DI3 触发
	NAME OF THE OWNER OWNER OF THE OWNER OWNE	1: 为 Z 信号触发
		探针 1 触发 DI 电平选择
7	 保留	0: DI3 为低电平
	N.E.	1: DI3 为高电平
	探针 2 使能	探针 2 使能
8	0: 不使能探针 2	0: 不使能探针 2
	1: 使能探针 2	1: 使能针 2
	探针 2 触发模式	探针 2 上升沿锁存
9	0: 单次触发	0:未执行探针2上升沿锁存
	1: 连续触发	1:已执行探针2上升沿锁存
	探针 2 触发信号选择	探针 2 下降沿锁存
10	0: DI4 触发	0:未执行探针2下降沿锁存
	1: Z 信号触发	1:已执行探针2下降沿锁存
11	保留	保留
11	探针 2 上升沿锁存	IV III
12	13.	保留
12	0. 小使用採钉 2 工力冶锁存 1: 使用探针 2 上升沿锁存	
	探针 2 下降沿锁存	
13	13.	保留
13	1:使用探针2下降沿锁存	
	1. 区加环日本工作中/1000分	 探针 2 触发信号选择
14	保留	
		0: DI4 触发
15	保留	探针 2 触发 DI 电平选择
		0: DI4 低电平 1: DI4 高电平

◆ 举例如何使用探针功能,步骤如下:

1、设定探针触发 DI 信号:探针 1 和探针 2 所对应的 DI 功能:码分别是 39 和 40:

伺服功能码	意义
P04.03	DI3 端子功能设定"39"为探针 1
P04.04	DI4 端子功能设定"40"为探针 2
P04.13	DI3 逻辑选择: 0 低电平有效,1 高电平有效
P04.14	DI4 逻辑选择: 0 低电平有效,1 高电平有效

2、设定探针功能(60B8h)

探针功能(60B8h)和探针状态字(60B9h)各 bit 位意义如表 5-43 所示:

例如,使用探针 1 和探针 2 上升沿和下降沿,DI 单次触发,则设置 60B8h=3131h (十进制表示为 12593),当 DI3、DI4 信号上升沿时,探针 1 和探针 2 分别将锁存位置于 60BAh 和 60BCh;当 DI4、DI5 信号下降沿时,探针 1 和探针 2 分别将锁存位置于 60BBh 和 60BDh

注意:如果想再次进行单次触发,则需要设置 60B8h=0,60B8h=3131h

3、探针功能常用对象字典如表 5-47 所示。

表 5-47, 探针功能相关的字典对象

对象字典	意义
60B8h	探针功能
60B9h	探针状态字
60BAh	探针 1 上升沿位置反馈
60BBh	探针 1 下降沿位置反馈
60BCh	探针 2 上升沿位置反馈
60BDh	探针 2 下降沿位置反馈

5.11 电子齿轮比补充说明

可通过 P09.13(2109-0Eh) 右起第 2 位切换选择两种齿轮比:

- P09.13 右起第 2 位设置为 0 时,由 P00.08 或者 P00.10/P00.12 设置电子齿轮比,此时 6091h、6092h 不再起作用;可通过 P00.08 设定电机每旋转一圈所需要的指令脉冲数,代替电子齿轮使用。如果 P00.08 值为 0 时,则使用电子齿轮比 P00.10/P00.12
- P09.13 右起第 2 位设置为 1 时, 由 6091h、6092h 来设置电子齿轮比, 此时 P00.08 和 P00.10/P00.12 不再起作用,如下:

举例说明: 17bit 编码器器电机 608F=131072,如果想要上位机发 10000 个指令对应驱动轴转一圈,可以将对象设置 6091h 为 1:1,6092h 为 10000:1

5.12 指令单位说明

◆ 关于速度指令单位:

P09.13(2109-0Eh)的十六进制值右起第三位决定速度指令的单位,

0: RPM,

1: 用户指令/s

◆ 关于加减速指令单位:

P09.13(2109-0Eh)的十六进制值右起第四位决定加速时间,

0: 0RPM-1000RPM 的加速时间 ms;

1: 指令/s^2

6

6 参数说明

- ◆ 6.1 通用参数一览表
- ◆ 6.2 参数详细说明
- ◆ 6.3 总线专用功能码

6.1 通用参数一览表

相关模式: P: 位置模式; S: 速度模式; T: 转矩模式。 表中的 "•" 表示参数在这种模式下使用,"-"表示不使用

组号		67 1hr	相关	模ェ	t
组 分		名称		S	Т
	00	电机旋转正方向定义	•	•	•
	01	控制模式选择	•	•	•
	02	实时自调整模式	•	•	•
	03	刚性等级设定	•	•	•
	04	惯量比	•	•	•
	14	电机一圈输出脉冲数(32 位)	•	-	-
	16	脉冲输出正方向定义	•	•	•
	17	脉冲输出 OZ 极性	•	-	1
	18	脉冲输出功能选择	•	-	-
P00	19	位置偏差过大阀值(32 位)	•	•	•
	21	制动电阻设置	•	•	•
	22	外置电阻功率容量	•	•	•
	23	外置电阻阻值	•	•	•
	24	外置电阻发热时间常数	•	•	•
	25	制动电压点	•	•	•
	26	位置步进量设定	•	-	-
	27	高速脉冲串形态	•	-	-
	28	模数模式低 32 位	•	-	-
	30	模数模式高 32 位	•	•	

组号		名称	相关模式			
纽亏				S	Т	
	00	位置环增益 1	•	-	1	
	01	速度环增益 1	•	•	1	
	02	速度环积分时间 1	•	•	1	
	03	速度检测滤波 1	•	•	•	
	04	转矩指令滤波 1		•	•	
	05	位置环增益 2		-	-	
	06	速度环增益 2	•	•	1	
	07	速度环积分时间 2			-	
	08	速度检测滤波 2			•	
	09	转矩指令滤波 2			•	
	10	速度调节器 PDFF 系数			- 1	
	11	速度前馈控制选择		-	-	
P01	12	速度前馈增益		-	- 1	
	13	速度前馈滤波时间		-	- 1	
	14	转矩前馈选择			-	
	15	转矩前馈增益			- 1	
	16	转矩前馈滤波时间			- 1	
	17	DI 功能 GAIN-SWITCH 切换选择			- 1	
	18	位置控制切换模式		-	- 1	
	19	位置控制切换延时		-	- 1	
	20	位置控制切换等级		-	- 1	
	21	位置控制切换回滞		-	-	
	22	位置增益切换时间		-	-	
	23	速度控制切换模式	-		-	
	24	速度控制切换延时	-		-	

<i>∠</i> □ □		名称	相	式	
组号			Р	S	Т
P01	25	速度控制切换等级	- 1	•	- 1
	26	速度控制切换回滞	- 1	•	- 1
	27	转矩控制切换模式	- 1	- 1	•
	28	转矩控制切换延时	- 1	- 1	•
	29	转矩控制切换等级	- 1	- 1	•
	30	转矩控制切换回滞	- 1	- 1	•
	31	观测器启用	•	•	•
	32	观测器截止频率	•	•	•
	33	观测器相位补偿时间	•	•	•
	34	观测器惯量系数	•	•	•

	00	位置指令平滑滤波	•	-	-
	01	位置指令 FIR 滤波	•	-	-
	02	自适应滤波器模式	•	•	•
	03	自适应滤波负载模式	•	•	•
	04	第1陷波器频率(手动)	•	•	•
	05	第1陷波器宽度	•	•	•
P02	06	第1陷波器深度	•	•	•
	07	第2陷波器频率(手动)	•	•	•
	80	第 2 陷波器宽度	•	•	•
	09	第2陷波器深度	•	•	•
	10	第 3 陷波器频率	•	•	•
	11	第 3 陷波器宽度	•	•	•
	12	第 3 陷波器深度	•	•	•

/n D			相关模式			
组号		名称 	Р	S	Т	
	13	第 4 陷波器频率	•	•	•	
	14	第 4 陷波器宽度	•	•	•	
	15	第 4 陷波器深度	٠	٠	•	
	19	位置指令 FIR 滤波 2	•	-	-	
	20	第1减振频率	•	•	-	
	21	第1减振滤波设定	•	•	-	
P02	22	第 2 减振频率	•	•	-	
	23	第2减振滤波设定	٠	٠	-	
	31	共振点1频率	•	•	•	
	32	共振点1频宽	•	•	•	
	33	共振点 1 幅度	•	•	•	
	34	共振点2频率	٠	٠	•	
	35	共振点2频宽	٠	٠	•	
	36	共振点 2 幅度	•	•	•	
	00	速度指令来源	-	•	-	
	03	速度指令设定值	1	•	-	
	04	点动速度设定值	ı	٠	-	
	80	转矩限制来源	٠	٠	-	
	09	正转内部转矩限制	•	•	1	
	10	反转内部转矩限制	•	•	-	
	11	正转侧外部转矩限制	•	•	1	
	12	反转侧外部转矩限制	•	•	1	
	14	加速时间 1	-	•	•	
	15	减速时间 1	-	•	•	
	16	加速时间 2	-	•	1	
	17	减速时间 2	-	•	-	
	19	零速钳位功能	·	•	•	
	20	零速钳位阀值	-	•	•	
P03	22	转矩指令来源	ı	1	•	
	25	转矩指令键盘设定值	ı	1	•	
	26	转矩控制时速度限制来源选择	-	-	•	
	27	内部正速度限制	-	-	•	
	28	内部负速度限制	-	-	•	
	29	硬限位转矩限制	•	-	-	
	30	硬限位转矩限制检测时间	•	-	-	
	31	速度指令序号选择方式	-	•	-	
	32	第卜第 8 段速度指令使用的加速时间	-	•	-	
	33	第卜第 8 段速度指令使用的减速时间	-	•	-	
	34	第 9 ~第 16 段速度指令使用的加速时	1	٠	-	
	35	第 9 ~第 16 段速度指令使用的减速时	-	•	1	
	36	第1段速度	-	٠	-	
	37	第2段速度	-	•	-	
	38	第 3 段速度	-	•	-	

40 D		AT The	相关模式			
组号		名称	Р	S	Т	
P03	39	第4段速度	-	•	-	
	40	第5段速度	-	•	-	
	41	第6段速度	-	•	-	
	42	第7段速度	1	•	1	
	43	第8段速度	1	•	1	
	44	第9段速度	ı	•	ı	
	45	第 10 段速度	1	•	1	
	46	第 11 段速度	1	•	1	
	47	第 12 段速度	-	•	-	
	48	第 13 段速度	-	•	-	
	49	第 14 段速度	-	•	-	
	50	第 15 段速度	-	•	-	
	51	第 16 段速度	-	•	-	
	00	普通 DI 滤波选择	•	•	•	
	01	DI1 端子功能选择	•	•	•	
	02	DI2 端子功能选择	•	•	•	
	03	DI3 端子功能选择	•	•	•	
	04	DI4 端子功能选择	•	•	•	
	05	DI5 端子功能选择	•	•	•	
	06	DI6 端子功能选择	•	•	•	
	07	DI7 端子功能选择	•	•	•	
	80	DI8 端子功能选择	•	•	•	
	09	DI9 端子功能选择	•	•	•	
	11	DI1 端子逻辑选择	•	•	•	
	12	DI2 端子逻辑选择	•	•	•	
	13	DI3 端子逻辑选择	•	•	•	
	14	DI4 端子逻辑选择	•	•	•	
	15	DI5 端子逻辑选择	•	•	•	
P04	16	DI6 端子逻辑选择	•	•	•	
	17	DI7 端子逻辑选择	٠	٠	٠	
	18	DI8 端子逻辑选择	•	•	•	
	19	DI9 端子逻辑选择	•	•	•	
	21	DO1 端子功能选择	•	•	•	
	22	DO2 端子功能选择	•	•	•	
	23	DO3 端子功能选择	•	•	•	
	24	DO4 端子功能选择	•	•	•	
	25	DO5 端子功能选择	•	•	•	
	26	DO6 端子功能选择	٠	•	٠	
	27	DO7 端子功能选择	•	•	•	
	28	DO8 端子功能选择	٠	•	•	
	29	DO9 端子功能选择	٠	•	٠	
	31	DO1 端子逻辑电平选择	•	٠	•	
	32	DO2 端子逻辑电平选择	٠	•	•	
	33	DO3 端子逻辑电平选择	•	•	•	

组号		名称	相	关模	式
			Р	S	Т
	34	DO4 端子逻辑电平选择	•	•	•
	35	DO5 端子逻辑电平选择	•	•	•
	36	DO6 端子逻辑电平选择	•	•	•
	37	DO7 端子逻辑电平选择	•	•	•
	38	DO8 端子逻辑电平选择	•	•	•
	39	DO9 端子逻辑电平选择	•	•	•
	41	FunINL 信号未分配的状态(HEX)	•	•	•
	42	FunINH 信号未分配的状态(HEX)	•	•	•
	43	电机旋转信号速度门限值	•	•	•
	44	速度一致信号宽度	1	•	1
	45	速度到达指定值	•	•	•
P04	47	定位完成范围	•	-	1
	48	定位完成输出设定	•	-	1
	49	定位完成保持时间	•	-	1
	50	定位接近范围	•	-	1
	51	零速时制动器动作后伺服 OFF 延时	•	•	•
	52	运转中制动器动作时的速度设定		•	•
	53	运转中制动器动作时的等待时间		•	•
	54	DB 状态设置	•	•	•
	55	转矩到达指定值	•	•	•
	56	转矩到达检测宽度	•	•	•
	57	Z 脉冲宽度调整		•	•
	58	零速信号输出门限值			•

/n =		A The	相关	模式	弋
组号		名称	Р	S	Т
	00	第2电子齿轮分子(32位)		-	-
	02	第3电子齿轮分子(32位)		-	-
	04	第4电子齿轮分子(32位)	•	-	-
	06 位置偏差清除功能 09 电子齿轮比切换延时设置 10 势能负载转矩补偿值	•	-	-	
			-	-	
	10	势能负载转矩补偿值			-
	11	P06.10 存储选项	•	٠	- 1
	19	参数识别速度值	•	٠	1
	20	参数识别加速时间			-
	21	参数识别减速时间		•	
	22	参数识别模式		•	-
	23	初始角度辨识电流限制			
	24	瞬间停电保护	•	٠	٠
	25	瞬间停电减速时间		•	•
	26	伺服 OFF 停机方式	•	٠	٠
	27	第二类故障停机方式选择			
	28	超程输入设定			
	29	超程时的停止方式		•	•
P06	30	电源输入缺相保护选择			•
F 00	31	电源输出缺相保护选择			
	32	紧急停止转矩		•	•
	33	飞车保护功能			•
	34	过载警告值			
	35	电机过载保护系数	•	•	•
	36	欠压保护点	•	•	•
	37	过速故障点			
	38	脉冲输入最大频率	•		
	39	对地短路检测保护选择	•	•	•
	40	编码器干扰检测延时			•
	41	脉冲输入滤波设定			-
	42	脉冲禁止输入设定	•	-	-
	43	偏差清零输入设定	•	-	-
	44	高速 DI 滤波设定		•	•
	45	速度偏差过大阀值		•	
	46	转矩饱和超时时长	•		•
	47	绝对值系统设定	•	•	•
	48	编码器电池低压阀值			
	49	高速脉冲输入滤波		•	•

细旦		€ The	相乡		式
组号 ————		名称 	Р	S	Т
	00	面板显示选项	•	•	٠
	01	面板监控参数设置 1	•	•	٠
	02	面板监控参数设置 2	•	•	٠
	03	面板监控参数设置 3	•	•	•
	04	面板监控参数设置 4	•	•	•
	05	面板监控参数设置 5	•	•	•
	80	功能选项 1	•	•	•
	09	功能选项 2	•	•	•
P07	10	用户密码	•	•	•
	11	断电及时存储功能	•	•	•
	12	用户加密锁屏时间	•	•	٠
	14	快速减速时间	•	•	•
	16	功能选项 3	•	•	•
	17	电机一圈最大等分数	•		-
	19	功能选项 5	•	•	•
	20	功能选项 6	•	•	•
	21	功能选项 7	•	•	•
	22	功能选项 8	•	•	
	23	故障复位时机	•		
	24	正向软限位(32 位)	•	•	•
	26	负向软限位(32 位)	•		•
	00	多段预置位置指令执行方式	•	-	-

	00	多段预置位置指令执行方式	•	-	-
	01	起始段序号	•	-	-
	02	终点段序号	•	-	-
	03	暂停再启动之后剩余段数处	•	ı	-
	04	位置指令类型	•	1	-
	05	等待时间的单位	•	-	-
	06	第1段位移量(32位)	•	ı	-
	80	第1段最大速度	•	-	-
P08	09	第1段加减速时间	•	-	-
	10	第1段完成之后等待时间	•	ı	-
	11	第2段位移量(32位)	•	-	-
	13	第2段最大速度	•	ı	-
	14	第2段加减速时间	•	ı	-
	15	第2段完成之后等待时间	•	-	-
	16	第3段位移量(32位)	•	ı	-
	18	第3段最大速度	•	1	-
	19	第3段加减速时间	•	-	-
	20	第3段完成之后等待时间	•	ı	-
	21	第4段位移量(32位)	•	-	-
	23	第4段最大速度	•	-	-
	24	第4段加减速时间	•	-	-
	25	第4段完成之后等待时间	•	-	-

<i>4</i> 1 =		67 1hr	相关模式		
组号		名称 	Р	S	Т
26		第5段位移量(32位)	•	-	-
29 第 5 段加减退 30 第 5 段完成 31 第 6 段位移 33 第 6 段最大 33 第 6 段品成 35 第 6 段加减 35 第 6 段元成 36 第 7 段位移 38 第 7 段位移 40 第 7 段元成 41 第 8 段位移 43 第 8 段品成 44 第 8 段品成 44 第 8 段品成 45 第 8 段元成 44 第 8 段元成 46 第 9 段位移 46 第 9 段元成 46 第 9 段位移 46 第 9 段元成 46 第 9 段位移 46 第 9 段位移 46 第 9 段元成 46 第 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28	第5段最大速度	•	-	-
	29	第5段加减速时间	•	-	-
	30	第 5 段完成之后等待时间	•	-	-
	31	第6段位移量(32位)	•	-	-
	33	第6段最大速度	•	-	-
	第6段加减速时间	٠	-	-	
	35 第6段完成之后等待时间	第6段完成之后等待时间	•	-	-
	36	第7段位移量(32位)	•	-	-
	38	第7段最大速度	•	-	-
	39	第7段加减速时间	٠	-	-
	40	第7段完成之后等待时间	٠	-	-
		第8段位移量(32位)	٠	-	-
	_	第8段最大速度	٠	-	-
		第8段加减速时间	٠	-	-
	_	第8段完成之后等待时间	٠	-	-
		第9段位移量(32位)	•	-	-
		第9段最大速度	•	-	-
	49	第9段加减速时间	•	-	-
	50	第9段完成之后等待时间	•	-	-
	51	第 10 段位移量(32 位)	•	-	-
P08	53	第10段最大速度	•	-	-
	54	第10段加减速时间	•	-	-
	55	第 10 段完成之后等待时间	•	-	-
	56	第 11 段位移量(32 位)	•	-	-
	58	第 11 段最大速度	•	-	-
	59 C0	第11段加减速时间	•	-	-
	60	第 11 段完成之后等待时间 第 12 段位移量(32 位)	•	-	-
	61		•	-	-
	63 64	第 12 段最大速度	•	-	-
	64 65	第 12 段加减速时间 第 12 段完成之后等待时间	•	-	-
	66	第 13 段位移量(32 位)	•	-	-
	68	第 13 段最大速度	•	-	-
	69	第 13 段加减速时间	•	-	_
	70	第 13 段完成之后等待时间	•	-	
	71	第 14 段位移量(32 位)	•	-	
	73	第 14 段最大速度	•	_	_
	74	第 14 段加减速时间	•	-	-
	75	第 14 段完成之后等待时间	•	-	_
	76	第 15 段位移量(32 位)	•	-	_
	78	第 15 段最大速度	•	-	
	79	第 15 段加减速时间	•	-	_
			<u> </u>		
	80	第 15 段完成之后等待时间	•	-	-

组号		名称	相	相关模式	
		台 柳	Р	S	Т
P08	81	第 16 段位移量(32 位)	•	1	1
	83	第 16 段最大速度	•	1	1
	84	第 16 段加减速时间	•	ı	1
	85	第 16 段完成之后等待时间	•	1	-
	86	位置指令抢断执行设定	•	-	-
	88	原点回归启动方式	•	-	-
	89	原点回归模式		-	-
	90	原点回归时限位和 Z 信号设定	•	-	-
	92	高速搜索原点的速度	•	-	-
	93	低速搜索原点的速度	•	-	-
	94	搜索原点时的加减速时间		-	-
	95	回原点过程时间限定值		-	-
	96	原点坐标偏移(32 位)	•	-	-
	98	机械原点位置偏移量(32 位)	•	-	-

P09	00	伺服轴地址编号		•	•
	01	Modbus 波特率	•	•	•
	02	Modbus 数据格式	•	•	•
	03	通信超时	•	•	٠
	04	通信应答延时	•	•	٠
	05	通信控制 DI 使能设定 1	•	•	٠
	06	通信控制 DI 使能设定 2	•	•	٠
	07	通信控制 DI 使能设定 3	•	•	•
	80	通信控制 DI 使能设定 4	•	•	•
	09	通信控制 DO 使能设定 1	•	•	٠
	10	通信控制 DO 使能设定 2	•	•	•
	11	通信设定命令值维持时间	•	•	•
	12	选择启用 AO 功能或者 CAN 通信	•	•	•
	13	总线通信配置 1	•	•	٠
	14	总线通信配置 2	•	•	•
	15	总线通信配置 3	•	•	•
	16	总线断线检测	•	•	•
	17	总线通信配置 4	•	•	٠
	18	总线从站号配置	•	•	•
	20	一体机轴号设置	•	•	•
	21	一体机功能配置	•	•	•

/n n		67 Im	相	关模式		
组号		名称	Р	S	Т	
	00	当前从机通信第 x 台	•	•	•	
	01	起始从机第 y 台		•	•	
	02	终止从机第 z 台	•	•	•	
	03	保留	•	•	•	
	04	从机操作第 n 台	•	•	•	
	05	整流故障记录显示	•	•	•	
	06	整流故障码	•	•	•	
	07	整流单元温度	•	•	•	
	08	整流单元直流母线电压	•	•	•	
	09	整流单元状态标志位	•	•	•	
P14	10	整流掉电保存	•	•	•	
	11	整流故障清除	•	•	•	
	12	整流恢复出厂参数	•	•	•	
	13	整流制动电压点	•	•	•	
	14	功能选项 14_1	•	•	•	
	15	功能选项 14_2	•	•	•	
	16	整流单元软件版本号	•	•	•	
	17	整流单元欠压保护点	•	•	•	
	18	整流版本日期	•	•	•	
	19	功能选项 14_3	•	•	•	
	20	逆变总数	•	•	•	
P18	00	电机型号编码	•	•	•	
P19	00	驱动器型号编码	•	٠	•	
	00	键盘 JOG 试运行	•	•	•	
	01	故障复位	•	٠	•	
	03	参数辨识功能	•	•	•	
	05	模拟输入自动校正	•	•	•	
P20	06	系统初始化功能	•	•	•	
P20	80	通信操作命令输入	•	•	•	
	09	通信操作状态输出	•	•	•	
	10	通信设定 DI 输入	•	٠	•	
	11	通信选择多段指令序号	•	•	-	
	12	通信启动原点回归	•	-	-	
	00	伺服状态	•	•	•	
	01	电机转速反馈(32位)	•	•	•	
	03	速度指令	•	•	•	
	04	内部转矩指令(相对于额定转	•	•	•	
P21	05	相电流有效值	•	•	•	
	06	母线电压值	•	٠	•	
	07	绝对位置计数器(32 位)	•	•	•	
	09	电气角度	•	•	•	
	10	机械角度(相对于编码器零点)	•	•	•	

组号		名称	相	关模	式
リ U		1217)	Р	S	Т
	11	辨识的惯量值	•	•	•
	12	输入位置指令对应速度信息	•	•	•
	13	位置偏差计数器(32 位)	•	•	•
	15	输入指令脉冲计数器(32位)	•	•	•
	17	反馈脉冲计数器(32 位)	•	•	•
	19	位置偏差计数器指令单位 (32 位)	•	•	•
	21	数字输入信号监视	•	•	•
	23	数字输出信号监视	•	٠	٠
	25	总上电时间(32 位)	•	٠	٠
	27	AI1 电压校正值	•	٠	٠
	28	AI2 电压校正值	•	•	•
	29	AI1 原始电压值	•	•	•
	30	AI2 原始电压值	•	٠	٠
	31	模块温度值	•	٠	٠
	36	版本号1	•	٠	٠
	37	版本号 2	•	•	•
	38	版本号3	•	•	•
P21	39	产品系列代号	•	•	•
	40	故障记录的显示	•	•	•
	41	故障码	•	•	•
	42	所选故障时间戳(32位)	•	•	•
	44	所选故障时当前转速	•	•	•
	45	所选故障时当前电流 U	•	•	•
	46	所选故障时当前电流 V	•	•	•
	47	所选故障时母线电压	•	•	•
	48	故障时输入端子状态	•	•	•
	49	所选故障时输出端子状态	•	•	•
	50	总线版本号	•	•	•
	51	负载率	•	•	•
	52	再生负载率	•	•	•
	53	内部警告代码	•	•	•
	54	内部指令当前段序号		•	•
	55	定制版序列号	•	•	•
	56	绝对位置计数器高 32 位	•	•	•
	58	反馈脉冲计数器高 32 位	•	•	

6.2 参数详细说明

P00 组基本设置

P00.00	电机旋转正方向定义	设定范围	出厂值	单位	生效方式	相	关模	式
		0~1	0		再次上电	Р	S	Т

设定指令方向和电机旋转方向的关系

- 0: 正指令方向时,电机旋转方向为 CCW(从电机轴侧看旋转方向为逆时针方向)
- 1: 正指令方向时,电机旋转方向为 CW(从电机轴侧看旋转方向为顺时针方向)

P00.01	控制模式选择	设定范围	出厂值	单位	生效方式	相乡	关模	式
		0~7	0		停机生效	Р	S	Т

设定所需要的控制模式。

- 0: 位置模式
- 1: 速度模式
- 2: 转矩模式
- 3: 位置模式/速度混合模式
- 4: 位置模式/转矩混合模式
- 5: 速度模式/转矩混合模式
- 6:全闭环模式(保留)
- 7: CANopen/EtherCAT 模式

当选择模式 3 \sim 5 时,通过 DI 功能 MODE_SEL 来切换两种模式。MODE_SEL 为 0 时控制模式为第 1 模式,为 1 时候控制模式变为第 2 模式。使用 EtherCAT 通信控制,配置为模式 7.

P00.02	实时自调整模式	设定范围	出厂值	单位	生效方式	相	相关模	
		0~3	1		立即生效	Р	S	Т

设定实时自动调整的模式。

- 0:无效,实时自动调整功能无效。
- 1:标准模式,无增益切换。
- 2: 定位模式,有增益切换,特别适合位置控制。
- 3: 负载特性动态测试,但不设定参数

P00.03	刚性等级设定	设定范围	出厂值	单位	生效方式	相关	模:	式
		0 ~ 31	12		立即生效	יו או	S	Т

设定实时自动调整的响应等级。

 $0 \sim 31$,设定值越高,伺服控制回路的带宽越高,响应越快,同时也可能会产生更大的振动。请一边确认动作效果,一边由低到高调整刚性等级。

变更该参数需要等到控制指令为 0 时候才能起作用,请在变更该参数,让指令停止,确认 参数已经起作用后,再进行下一步动作。

P00.04	惯量比	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 6000	100	0.01	立即生效	Р	S	Т

设定负载与电机惯量的比值。

 $0 \sim 60.00$

P00.05	位置指令来源	设定范围	出厂值	单位	生效方式	相	相关模	
		0~2	0		停机生效	Р	S	Т

设定位置控制时的指令来源。

0: 脉冲指令

1: 步进量给定

2: 内部位置指令

设置为 0 时通过 P00_06 选择脉冲输入源

P00.06	脉冲来源	设定范围	出厂值	单位	生效方式	相乡	关模	式
		0~1	0		再次上电	Р	S	Т

0: 低速脉冲

1: 高速脉冲

P00.07	脉冲串形态	设定范围	出厂值	单位	生效方式	相关模	試
		0 ~ 5	0		再次上电	Р	

设定脉冲指令的输入形态。

0:方向+脉冲,正逻辑。(默认值)

1: 方向+脉冲,负逻辑

2: A 相(Pulse)+B 相(sign)正交脉冲 4 倍频,正逻辑(A 超前 B 为正)

3: A 相(Pulse)+B 相(sign)正交脉冲 4 倍频,负逻辑(B 超前 A 为正)

4: CW+CCW,正逻辑

5: CW+CCW, 负逻辑

P00.08	电机一圈所需单位指令数	设定范围	出厂值	单位	生效方式	相关模	試
	(32位)	0~2147483646	10000	1Unit	再次上电	Р	

设定电机每旋转一圈所需要的指令脉冲数,可代替电子齿轮使用。

0 Unit/Turn ∼ 2147483646 Unit/Turn

当此功能码值为0时,电子齿轮参数才起作用。

P00.10	第1电子齿轮分子(32位)	设定范围	出厂值	单位	生效方式	相关模	式
		0~2147483646	1		立即生效	Р	

设定第1组电子齿轮的分子。

1 ∼ 2147483646

当 P00.08=0 时才起作用。

P00.12	电子齿轮分母(32 位)	设定范围	出厂值	单位	生效方式	相关模式	式
		1 ~ 2147483646	1	-	立即生效	Р	

设定第1组电子齿轮的分母。

 $1 \sim 2147483646$

当 P00.08=0 时才起作用。

P00.14	电机一圈输出脉冲数(32	设定范围	出厂值	单位	生效方式	相关	莫式
	位)	16 ~ 2147483646	2500	1PPR	再次上电	Р	

设定电机每旋转 1 圈输出的 OUTA 或 OUTB 的脉冲数。

16PPR ~ 2147483646PPR (按增量光电编码器计算对应线数)

P00.16	脉冲输出正方向定义	设定范围	出厂值	单位	生效方式	相	相关模	
		0~1	0		再次上电	Р	S	Т

设定脉冲输出功能的相序逻辑。

0: CCW(电机旋转方向为 CCW 时,脉冲输出 OUTA 超前 OUTB)

1: CW (电机旋转方向为 CW 时,脉冲输出 OUTA 超前 OUTB)

P00.17	脉冲输出 OZ 极性	设定范围	出厂值	单位	生效方式	相关模	式
		0~3	0		再次上电	Р	

0: Z脉冲冲到来时为低电平

1: Z脉冲冲到来时为高电平

2: 高精度 Z 脉冲, Z 脉冲冲到来时为低电平

3: 高精度 Z 脉冲, Z 脉冲冲到来时为高电平

P00.18	脉冲输出功能选择	设定范围	出厂值	单位	生效方式	相关机	莫式
		0~3	0	-	再次上电	Р	

0:编码器分频输出

1: 脉冲指令同步输出

2: 脉冲指令插补输出(龙门同步)

3: 外部编码器脉冲同步输出

P00.19	位置偏差过大阈值(32 位)	设定范围	出厂值	单位	生效方式	相关模		式
		1~2147483646	200000	1P	立即生效	Р	S	Т

设定位置偏差过大(Er_43 故障)检测的阈值,单位为编码器最小分辨率。

1P ~ 2147483646P

P00.21	制动电阻设置	设定范围	出厂值	单位	生效方式	相关模		式
		0~1	1		立即生效	Р	S	Т

设定能耗制动电阻的使用形式。

0:使用内置能耗电阻(100s)

1: 使用外置能耗电阻并且自然冷却(150s)或强迫风冷(200s)

P00.22	外置电阻功率容量	设定范围	出厂值	单位	生效方式	相	关模	式
		1 ~ 65535	100	1W	立即生效	Р	S	Т

设定能耗制动电阻的功率。

 $1 \text{W} \sim 65535 \text{W}$

P00.23	外置电阻阻值	设定范围	出厂值	单位	生效方式	相	相关模	
		1 ~ 1000	100	1Ω	立即生效	Р	S	Т

设定能耗制动电阻的阻值。

1欧姆~1000欧姆

P00.24	外置电阻发热时间常数	设定范围	出厂值	单位	生效方式	相关模式		式
		1~30000	3000	0.1s	立即生效	Р	S	Т

设定能耗制动电阻的发热时间常数。

 $0.1s \sim 3000.0s$

P00.25	制动电压点	设定范围	出厂值	单位	生效方式	相	相关模式	
		0 ∼ 65535	385		立即生效	Р	S	Т

0V~1000V(一般默认即可)

P00.26	位置步进量设定	设定范围	出厂值	单位	生效方式	相关模	式
		-9999 ~ 9999	50		立即生效	Р	

设定步进量位置控制时的指令设定值。

-9999 ~ 9999 指令单位

P00.27	高速脉冲串形态	设定范围	出厂值	单位	生效方式	相关模		式
		0~5	0		再次上电	Р		

- 0:方向+脉冲,正逻辑。(默认值)
- 1:方向+脉冲,负逻辑
- 2: A 相(Pulse)+B 相(sign)正交脉冲,4 倍频,正逻辑
- 3: A相+B相正交脉冲,4倍频,负逻辑
- 4: CW+CCW,正逻辑
- 5: CW+CCW,负逻辑

P00.28	模数模式低 32 位	设定范围	出厂值	单位	生效方式	相关模式
		0~4294967295	0	Р	再次上电	Р

编码器单位:P

-绝对值系统下,如果设此值则开启模数模式,计数值只能从 0 计到此值减 1(齿轮比为 1 时),需要 P07.11 设 1 开启掉电记忆功能,P20-06 写 8 清除多圈和位置反馈;设置完成重上电如果 P00.28 和 P00.30 按默认为 0,则为线性模式

P00.30	模数模式高 32 位	设定范围	出厂值	单位	生效方式	相	关模	式
		0~4294967295	0	Р	再次上电	Р	S	Т

编码器单位:P

-绝对值系统下,如果设此值则开启模数模式,计数值只能从 0 计到此值减 1(齿轮比为 1 时),需要 P07.11 设 1 开启掉电记忆功能,P20-06 写 8 清除多圈和位置反馈;设置完成重上电如果 P00.28 和 P00.30 按默认为 0,则为线性模式

P01 组 增益调整

P01.00	位置环增益 1	设定范围	出厂值	单位	生效方式	相关模式
		10 ~ 20000	400	0.1/s	立即生效	Р

设定位置环增益,决定位置环响应水平。

 $1.0/s \sim 2000.0/s_{\circ}$

增益越大,位置环响应越快。但是设定值过大可能会引起振动。

P01.01	速度环增益 1	设定范围	出厂值	单位	生效方式	相	关模:	式
		10 ~ 20000	200	0.1HZ	立即生效	Р	S	

设定速度环增益,决定速度环响应水平。

1.0Hz ∼ 2000.0Hz_o

增益越大,速度环响应越快。但是设定值过大可能会引起振动。

P01.02	速度环积分时间 1	设定范围	出厂值	单位	生效方式	相	关模	式
		15 ~ 51200	3000	0.01ms	立即生效	Р	S	

设定速度环控制器的积分时间。

 $0.15 \text{ms} \sim 512.00 \text{ms}_{\circ}$

设定值越小,稳态偏差越小。当积分时间等于512.00时,积分无效。

P01.03	速度检测滤波 1	设定范围	出厂值	单位	生效方式	相关	模	式
		0 ∼ 15	0		立即生效	P 5		Т

设定速度检测的滤波等级。

 $0 \sim 15$

值越大,抑制振动效果越好,但会降低响应带宽。

P01.04	转矩指令滤波 1	设定范围	出厂值	单位	生效方式	相	相关模	
		0~10000	100	0.01ms	立即生效	Р	S	Т

设定转矩指令部分的一阶低通滤波器时间常数。

0.00ms ~ 100.00 ms $_{\circ}$

可抑制因为机械扭曲而产生的共振。

P01.05	位置环增益 2	设定范围	出厂值	单位	生效方式	相乡		式
		10 ~ 20000	400	0.1/s	立即生效	Р		

1.0/s~2000.0/s,第二组参数作用同上。

P01.06	速度环增益 2	设定范围	出厂值	单位	生效方式	相	关模	式
		10 ~ 20000	200	0.1HZ	立即生效	Р	S	

1.0Hz ~ 2000.0Hz,第二组参数作用同上。

P01.07	速度环积分时间 2	设定范围	出厂值	单位	生效方式	相	关模	式
		15 ~ 51200	3000	0.01ms	立即生效	Р	S	

0.15ms ~ 512.00ms, 第二组参数作用同上。

P01.08	速度检测滤波 2	设定范围	出厂值	单位	生效方式	相关	模:	式
		0 ~ 15	0		立即生效	Р 5	\	Т

设定速度检测的滤波等级。

 $0 \sim 15$

值越大,抑制振动效果越好,但会降低响应带宽。

P01.09	转矩指令滤波 2	设定范围	出厂值	单位	生效方式	相	关模	迁
		0~10000	100	0.01ms	立即生效	Р	S	Т

0.00ms ~ 100.00ms,第二组参数作用同上。

P01.10	速度调节器 PDFF 系数	设定范围	出厂值	单位	生效方式	相	相关模:	
		0 ~ 1000	1000	0.1%	立即生效	Р	S	

设定速度调节器的 PDFF 系数。

 $0 \sim 100.0\%$

等于 100%时等同于 PI 调节器(默认),等于 0%时等同于 PDF 调节器,设为中间值可以减小超调,但会降低速度环的响应水平(相对 PI 调节器)。

P01.11	速度前馈控制选择	设定范围	出厂值	单位	生效方式	相关模式
		0~1	0		停机生效	Р

设定位置控制时的速度前馈选择。

0: 无速度前馈

1: 内部速度前馈

P01.12	速度前馈增益	设定范围	出厂值	单位	生效方式	相关模	式
		0 ∼ 1500	300	0.1%	立即生效	Р	

设定位置控制时的速度前馈增益。可以减小一定速度下的位置偏差。

 $0.0\% \sim 100.0\%$

P01.13	速度前馈滤波时间	设定范围	出厂值	单位	生效方式	相关模	美式
		0 ∼ 6400	50	0.01ms	立即生效	Р	

设定位置控制时的速度前馈滤波器时间常数。

 $0.00 \text{ms} \sim 64.00 \text{ms}$

P01.14	转矩前馈选择	设定范围	出厂值	单位	生效方式	相差	关模	式
		0~2	0	-	停机生效	Р	S	

设定位置或速度控制时的转矩前馈选择。

0: 无转矩前馈

1: 内部转矩前馈

2:将 TFFD 用作转矩前馈输入

P01.15	转矩前馈增益	设定范围	出厂值	单位	生效方式	相	相关模式	
		0~1000	0	0.1%	立即生效	Р	S	

设定位置或速度控制时的转矩前馈增益。可以减小加减速时的位置偏差。 0.0% ~ 100.0%

P01.16	转矩前馈滤波时间	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 6400	0	0.01ms	立即生效	Р	S	

设定位置或速度控制时的转矩前馈滤波器时间常数。

 $0.00 \text{ms} \sim 64.00 \text{ms}$

P01.17	DI 功能 GAIN-SWITCH 切换	设定范围	出厂值	单位	生效方式	相	关模:	式
	动作选择	0~1	0		立即生效	Р	S	

设定 DI 功能 GAIN-SWITCH 的作用。

0: 速度环调节器 P(1)/PI(0)切换,增益固定为第一组

1: 第一增益(0)、第二增益(1)切换

P01.18	位置控制切换模式	设定范围	出厂值	单位	生效方式	相关模	式
		0~10	0		立即生效	P S	

位置控制时,增益切换的触发条件设定。

- 0: 第一增益固定 (P01.00~P01.04)
- 1: 第二增益固定 (P01.05~ P01.09)
- 2: 利用 DI 输入(GAIN-SWITCH)进行第 1 第 2 组增益切换,或速度调节器进行 P/PI 切换。
- 3:转矩指令大,转矩指令超过等级(P01.20)+回滞(P01.21)切换到第 2 增益,当转矩指令低于等级(P01.20)-回滞(P01.21)时在规定的延时时间内回到第 1 增益,单位 0.1%
 - 4: 不适用位置控制和全闭环控制模式
- 5: 速度指令大,速度指令超过等级(P01.20)+回滞(P01.21)切换到第 2 增益,当速度指令低于等级(P01.20)-回滞(P01.21)时在规定的延时时间内回到第 1 增益,单位 1rpm
- 6: 位置偏差大,位置偏差超过等级(P01.20)+回滞(P01.21)切换到第 2 增益,当位置偏差低于等级(P01.20)-回滞(P01.21)时在规定的延时时间内回到第 1 增益,单位 1 编码器分辨率
- 7:有位置指令,位置指令不为0时换到第2增益,当位置指令持续为0在规定的延时时间内回到第1增益
 - 8: 定位未完成时,从第1增益切换到第2增益; 当定位完成后再规定的延时时间内返回第

1增益。

9:实际速度大,速度反馈超过等级(P01.20)+回滞(P01.21)切换到第2增益,当速度反馈低于等级(P01.20)-回滞(P01.21)时在规定的延时时间内回到第1增益

10: 有位置指令加实际速度,位置指令不为 0 时切换到第 2 增益,当位置指令为 0 且实际速度绝对值低于等级(P01.20)-回滞(P01.21)时返回第 1 增益。

P01.19	位置控制切换延时	设定范围	出厂值	单位	生效方式	相	关模式
		0~1000	50	0.1ms	立即生效	Р	S

设定位置控制时候增益切换的延时时间。

 $0 \sim 100.0$ ms

P01.20	位置控制切换等级	设定范围	出厂值	单位	生效方式	相关	英式
		0~20000	50		立即生效	P S	

设定位置控制时候增益切换的触发等级。

0~20000(单位:根据增益切换模式说明),注意该参数以P01.21的设置值为下限。

P01.21	位置控制切换回滞	设定范围	出厂值	单位	生效方式	相差	关模	式
		0~20000	33		立即生效	Р	S	

设定位置控制时候增益切换的触发等级的回滞。

0~20000(单位:根据增益切换模式说明),注意该参数以 P01.20 的设置值为上限。

P01.22	位置增益切换时间	设定范围	出厂值	单位	生效方式	相	关模	式
		0~10000	33	0.1ms	立即生效	Р	S	

设定位置控制时候增益切换从小增益到大增益的过渡时间。

 $0 \sim 1000.0 \text{ms}$

P01.23	速度控制切换模式	设定范围	出厂值	单位	生效方式	相关模:	式
		0 ~ 5	0		立即生效	S	

速度控制时,增益切换的触发条件设定。

- 0: 第一增益固定(P01.00~P01.04)
- 1: 第二增益固定 (P01.05~ P01.09)
- 2: 利用 DI 功能 3(GAIN_SEL)进行第 1 第 2 组增益切换,或速度调节器进行 P/PI 切换。
- 3:转矩指令大,转矩指令超过等级(P01.25)+回滞(P01.26)切换到第 2 增益,当转矩指令低于等级(P01.25)-回滞(P01.26)时在规定的延时时间内回到第 1 增益,单位 0.1%
- 4: 速度指令变化大,速度指令变化量超过等级(P01.25)+回滞(P01.26)切换到第2增益,当速度指令变化量低于等级(P01.25)-回滞(P01.26)时在规定的延时时间内回到第1增益,单位10rpm/s
- 5: 速度指令大,速度指令超过等级(P01.25)+回滞(P01.26)切换到第 2 增益,当速度指令低于等级(P01.25)-回滞(P01.26)时在规定的延时时间内回到第 1 增益,单位 1rpm

P01.24	速度控制切换延时	设定范围	出厂值	单位	生效方式	相关模式
		0~1000	0	0.1ms	立即生效	S

设定速度控制时候增益切换的延时时间。

 $0 \sim 100.0 \text{ms}$

P01.25	速度控制切换等级	设定范围	出厂值	单位	生效方式	相关模式	式
		0~20000	0		立即生效	S	

设定速度控制时候增益切换的触发等级。

0~20000(单位:根据增益切换模式说明),注意该参数以 P01.26 的设置值为下限。

P01.26	速度控制切换回滞	设定范围	出厂值	单位	生效方式	相关模	式
		0 ~ 20000	0		立即生效	S	

设定速度控制时候增益切换的触发等级的回滞。

0~20000(单位:根据增益切换模式说明),注意该参数以P01.25的设置值为上限。

P01.27	转矩控制切换模式	设定范围	出厂值	单位	生效方式	相关	模式
		0~3	0		立即生效		Т

转矩控制时,增益切换的触发条件设定。

- 0:第一增益固定(P01.00~P01.04)
- 1: 第二增益固定 (P01.05~ P01.09)
- 2: 利用 DI 输入(GAIN-SWITCH),利用 DI 输入(GAIN-SWITCH)进行第 1 第 2 组增益 切换,或速度调节器进行 P/PI 切换。
- 3: 转矩指令大,转矩指令超过等级(P01.29)+回滞(P01.30)切换到第 2 增益,当转矩指令低于等级(P01.29)-回滞(P01.30)时在规定的延时时间内回到第 1 增益,单位 0.1%

P01.28	转矩控制切换延时	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 1000	0	0.1ms	立即生效			Т

设定转矩控制时候增益切换的延时时间。

 $0 \sim 100.0 \text{ms}$

P01.29	转矩控制切换等级	设定范围	出厂值	单位	生效方式	相关模	走式
		0~20000	0		立即生效		Т

设定转矩控制时候增益切换的触发等级。

0~20000(单位:根据增益切换模式说明),注意该参数以P01.30的设置值为下限。

P01.30	转矩控制切换回滞	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 20000	0		立即生效			Т

设定转矩控制时候增益切换的触发等级的回滞。

0~20000(单位:根据增益切换模式说明),注意该参数以 P01.29 的设置值为上限。

P01.31	观测器启用	设定范围	出厂值	单位	生效方式	相关	莫式
		0~2	0	-	停机生效	P S	Т

0: 不启用

1: 调试

2: 启用

P01.32	观测器截止频率	设定范围	出厂值	单位	生效方式	相	关模	过
		0 ∼ 500	100	1Hz	停机生效	Р	S	Т

 $\rm 0 \sim 500 HZ$

P01.33	观测器相位补偿时间	设定范围	出厂值	单位	生效方式	相	关模	式
		0~10000	0	0.01ms	立即生效	Р	S	Т

 $0.00 \sim 100.00 \text{ms}$

P01.34	观测器惯量系数	设定范围	出厂值	单位	生效方式	相	关模	式
		0~10000	1000		停机生效	Р	S	Т

 $0 \sim 10000$

P01.40	模型制振是否有效	设定范围	出厂值	单位	生效方式	相关	€模:	式
		0~1	0		立即生效			

0: 无效,1: 有效

P01.41	模型跟踪选项	设定范围	出厂值	单位	生效方式	相关模式	式
		0~9	0		立即生效	Р	

0: 不启用

1: 启用,模型1,无外部前馈

2: 启用,模型1,外部前馈有效

3: 启用,模型 2,无外部前馈

4: 启用,模型 2,外部前馈有效

5: 9保留

P01.42	模型跟踪增益	设定范围	出厂值	单位	生效方式	相关模	式
		10 ~ 20000	500	0.1/s	立即生效	Р	

 $1.0 \sim 2000.0 / S$

P01.43	模型跟踪补偿系数	设定范围	出厂值	单位	生效方式	相关模	式
		500 ~ 2000	1000	0.1%	立即生效	Р	

 $50.0 \sim 200.0\%$

P01.44	模型跟踪速度补偿增益	设定范围	出厂值	单位	生效方式	相关模	茳
		0~2000	1000	0.1%	立即生效	Р	

 $0.0 \sim 200.0\%$

P01.45	模型跟踪转矩补偿增益 1	设定范围	出厂值	单位	生效方式	相关	:模3	式
		0~10000	1000	0.1%	立即生效	Р		

 $0.0 \sim 1000.0\%$

P01.46	模型跟踪转矩补偿增益 2	设定范围	出厂值	单位	生效方式	相差	关模	式
		0~10000	1000	0.1%	立即生效	Р		

 $0.0 \sim 1000.0\%$

P01.47	第二模型跟踪增益	设定范围	出厂值	单位	生效方式	相关模	式
		10 ~ 20000	500	0.1/s	立即生效	Р	

 $1.0\sim 2000.0\,/\mathrm{S}$

P01.48	第二模型跟踪补偿系数	设定范围	出厂值	单位	生效方式	相关模	茳
		500 ~ 2000	1000	0.1%	立即生效	Р	

50.0 ~ 200.0%

P01.49	模型反谐振频率	设定范围	出厂值	单位	生效方式	相关相	莫式
		10 ~ 2000	500	0.1HZ	立即生效	Р	

$\rm 1.0 \sim 200.0 HZ$

P01.50	模型残余振动频率	设定范围	出厂值	单位	生效方式	相关	模式
		10 ~ 2000	700	0.1HZ	立即生效	Р	

$\rm 1.0 \sim 200.0 HZ$

P01.51	振动抑制频率点	设定范围	出厂值	单位	生效方式	相关模	茳
		10 ~ 2000	800	0.1HZ	立即生效	Р	

$1.0 \sim 200.0 HZ$

P01.52	振动抑制补偿系数	设定范围	出厂值	单位	生效方式	相关	.模式	7
		10 ~ 1000	100	1%	立即生效	Р		

10% ~ 1000%

P01.53	模型延迟带宽参数	设定范围	出厂值	单位	生效方式	相急	关模	式
		0~30000	4500	0.1HZ	立即生效	Р		

$\rm 0 \sim 3000.0 HZ$

P01.54	模型延迟补偿参数	设定范围	出厂值	单位	生效方式	相关模	式
		500 ~ 1500	800		立即生效	Р	

 $500 \sim 1500$

P02 组 振动抑制

P02.00	位置指令平滑滤波	设定范围	出厂值	单位	生效方式	相关模	江
		0 ∼ 65535	0	0.1ms	立即生效	Р	

位置控制模式时,设定位置指令一阶低通滤波器时间常数。

 $0.0 \text{ms} \sim 6553.5 \text{ms}$

P02.01	位置指令 FIR 滤波	设定范围	出厂值	单位	生效方式	相关	模式	Ì
		0~1280	0	0.1ms	立即生效	Р		

位置控制模式时,设定位置指令 FIR 滤波器时间常数。

 $0.0 \text{ms} \sim 128.0 \text{ms}$

P02.02	自适应滤波器模式	设定范围	出厂值	单位	生效方式	相关	相关模式	
		0~4	0		立即生效	יו עו	S	Т

设定自适应滤波器的工作模式。

- 0: 自适应无效,第 3,4 滤波器工作但参数不变
- 1:1个自适应滤波器有效(第3滤波器参数根据自适应结果更新)
- 2:2个自适应滤波器有效(第3、4滤波器参数根据自适应结果更新)
- 3: 共振频率测定,结果显示但不更新滤波器参数
- 4: 清除自适应结果(自适应无效,且第3、4滤波器不工作)

P02.03	自适应滤波负载模式	设定范围	出厂值	单位	生效方式	相	相关模	
		0~1	0		立即生效	Р	S	Т

0:1

0: 高刚性负载;

1: 低刚性负载

P02.04	第1陷波器频率(手动)	设定范围	出厂值	单位	生效方式	相	关模	試
		50 ~ 5000	5000	1Hz	立即生效	Р	S	Т

设定第1陷波滤波器的中心频率。

 $50\sim5000$ Hz,5000HZ 时该滤波器无效。

P02.05	第1陷波器宽度	设定范围	出厂值	单位	生效方式	相关	相关模式	
		0 ~ 12	2		立即生效	Р 9	\	Т

设定第1陷波滤波器的频率宽度。

 $0 \sim 12$

P02.06	第1陷波器深度	设定范围	出厂值	单位	生效方式	相	关模	式
		0~99	0		立即生效	Р	S	Т

设定第1陷波滤波器中心频率对应的深度。

 $0 \sim 99$

P02.07	第2陷波器频率(手动)	设定范围	出厂值	单位	生效方式	相	关模	式
		50 ~ 5000	5000	1Hz	立即生效	Р	S	Т

设定第2陷波滤波器的中心频率。

 $50\sim5000$ Hz,5000HZ 时该滤波器无效。

P02.08	第2陷波器宽度	设定范围	出厂值	单位	生效方式	相之	关模	式
		0~12	2		立即生效	Р	S	Т

设定第2陷波滤波器的频率宽度。

 $0 \sim 12$

P02.09	第2陷波器深度	设定范围	出厂值	单位	生效方式	相	关模	式
		0~99	0		立即生效	Р	S	Т

设定第2陷波滤波器中心频率对应的深度。

 $0 \sim 99$

P02.10	第 3 陷波器频率	设定范围	出厂值	单位	生效方式	相	关模	式
		50 ~ 5000	5000	1Hz	立即生效	Р	S	Т

设定第3陷波滤波器(即自适应第1滤波器)的中心频率。

50~5000Hz,5000HZ 时该滤波器无效。

P02.11	第 3 陷波器宽度	设定范围	出厂值	单位	生效方式	相:	关模	式
		0~12	2		立即生效	Р	S	Т

设定第3陷波滤波器(即自适应第1滤波器)的频率宽度。

 $0 \sim 12$

P02.12	第3陷波器深度	设定范围	出厂值	单位	生效方式	相	关模	式
		0~99	0		立即生效	Р	S	Т

设定第3陷波滤波器(即自适应第1滤波器)中心频率对应的深度。

 $0 \sim 99$

P02.13	第4陷波器频率	设定范围	出厂值	单位	生效方式	相乡	相关模	
		50 ~ 5000	5000	1Hz	立即生效	Р	S	Т

设定第4陷波滤波器(即自适应第2滤波器)的中心频率。

50~5000Hz,5000HZ 时该滤波器无效。

P02.14	第4陷波器宽度	设定范围	出厂值	单位	生效方式	相关	模式	式
		0 ∼ 12	2		立即生效	P S		Т

设定第4陷波滤波器(即自适应第2滤波器)的频率宽度。

 $0 \sim 12$

P02.15 第 4 陷波器深度 设定范围	出厂值	单位	生效方式	相关模式
-----------------------	-----	----	------	------

SV-J3 系列总线伺服产品中文操作手册

					_
$0 \sim 99$	^	立即生効	D	C	I -
$0\sim99$	U	 ᅟᅭᄞᆂᅑ	1 P 1	2	1 1

设定第4陷波滤波器(即自适应第2滤波器)中心频率对应的深度。

 $0 \sim 99$

P02.19	位置指令 FIR 滤波 2	设定范围	出厂值	单位	生效方式	相关模	
		0 ∼ 1280	0	0.1ms	立即生效	Р	

位置控制模式时,设定位置指令 FIR 滤波器时间常数。

 $0.0 \text{ms} \sim 128.0 \text{ms}$

P02.20	第1减振频率	设定范围	出厂值	单位	生效方式	相急	关模:	式
		0~1000	0	0.1Hz	立即生效	Р	S	

设定低频共振频率点1的频率值。

 $10.0 HZ \sim 100.0 HZ$

P02.21	第1减振滤波设定	设定范围	出厂值	单位	生效方式	相	关模	式
		0~10	0	0.1	立即生效	Р	S	

设定低频共振频率点1的半周期衰减系数。

 $0 \sim 1.0$

P02.22	第2减振频率	设定范围	出厂值	单位	生效方式	相关模式	弌
		0~1000	0	0.1Hz	立即生效	P S	

设定低频共振频率点 2 的频率值。

 $10.0 HZ \sim 100.0 HZ$

P02.23	第 2 减振滤波设定	设定范围	出厂值	单位	生效方式	相关模式	式
		0~10	0	0.1	立即生效	P S	

设定低频共振频率点 2 的半周期衰减系数。

 $0 \sim 1.0$

P02.31	共振点1频率	设定范围	出厂值	单位	生效方式	相关模:		式
		0 ~ 5000	5000	1Hz	仅显示	Р	S	Т

自适应第1滤波器检测出来的共振频率

P02.32	共振点1频宽	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ~ 20	2		仅显示	Р	S	Т

自适应第1滤波器检测出来的频率宽度

P02.33	共振点 1 幅度	设定范围	出厂值	单位	生效方式	相关模		式
		0~1000	0		仅显示	Р	S	Т

自适应第1滤波器检测出来的共振频率幅度

P02.34	共振点2频率	设定范围	出厂值	单位	生效方式	相关模:		式
		0 ∼ 5000	5000	1Hz	仅显示	Р	S	Т

自适应第2滤波器检测出来的共振频率

P02.35	共振点2频宽	设定范围	出厂值	单位	生效方式	相关模		式
		0~20	2		仅显示	Р	S	Т

自适应第2滤波器检测出来的频率宽度

P02.36	共振点 2 幅度	设定范围	出厂值	单位	生效方式	相关模		式
		0~1000	0		仅显示	Р	S	Т

自适应第2滤波器检测出来的共振频率幅度

P03 组 速度转矩控制

P03.00	速度指令来源	设定范围	出厂值	单位	生效方式	相关模	茳
		0~6	0		停机生效	S	

设定速度控制时的指令来源。

0: 数字给定(P03:03)

1: SPR (默认 AI1)

2: SPR, 多段指令 2~16 切换

3: 多段指令1~16切换

4: 通信给定

5: SPR + 数字设定

6: 多段指令1~16切换+数字设定

P03.03	速度指令设定值	设定范围	出厂值	单位	生效方式	相关模式	式
		-9000 ∼ 9000	200	1rpm	立即生效	S	

设定速度指令数字给定值。

-9000rpm ~ 9000 rpm

P03.04	点动速度设定值	设定范围	出厂值	单位	生效方式	相关模式
		0~3000	200	1rpm	立即生效	S

设定点动时的速度设定值。

0rpm ∼ 3000rpm

P03.08	转矩限制来源	设定范围	出厂值	单位	生效方式	相关模式
		0~3	0		立即生效	P S

转矩限制来源选择。

0:正反内部转矩限制(默认)

1: 正反外部转矩限制(利用 P CL, N CL 选择)

2: TLMTP 作为正、反转矩限制

3: TLMTP、TLMTN 正反限制

P03.09	正转内部转矩限制	设定范围	出厂值	单位	生效方式	相	关模式
		0 ~ 5000	3000	0.1%	立即生效	Р	S

设定正转时内部转矩限制值,范围 0.0% ~ 500.0%(基于电机额定转矩)。

当 DI 配置了功能 16 (P_CL),且 DI 输入有效时,正转外部转矩限制生效;此设定值不得大于 P03.09 (正转内部转矩限制值)设定值。当此设定值大于参数 P03.09 设定值时,转矩限制值将以 P03.09 设定的值为准。

P03.10	反转内部转矩限制	设定范围	出厂值	单位	生效方式	相关模式
		0 ∼ 5000	3000	0.1%	立即生效	P S

设定反转时内部转矩限制值,范围 0.0% ~ 500.0%(基于电机额定转矩)。

当 DI 配置了功能 17(N_CL),且 DI 输入有效时,反转外部转矩限制生效;此设定值不得大于 P03.10(反转内部转矩限制值)设定值。当此设定值大于参数 P03.10 设定值时,转矩限制值将以 P03.10 设定的值为准。

P03.11	正转侧外部转矩限制	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 5000	3000	0.1%	立即生效	Р	S	

设定正转时外部转矩限制值,范围 0.0% ~ 500.0%(基于电机额定转矩)。

当 DI 配置了功能 16 (P_CL),且 DI 输入有效时,正转外部转矩限制生效。

P03.12	反转侧外部转矩限制	设定范围	出厂值	单位	生效方式	相关模式
		0 ∼ 5000	3000	0.1%	立即生效	P S

设定反转时外部转矩限制值,范围 0.0%~500.0%(基于电机额定转矩)

当 DI 配置了功能 17(N_CL), 且 DI 输入有效时, 反转外部转矩限制生效

P03.14	加速时间 1	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	10	1ms	立即生效		S	Т

 $0 \text{ms} \sim 65535 \text{ms}/1000 \text{rpm}$

P03.15	减速时间 1	设定范围	出厂值	单位	生效方式	相关	έ模	式
		0 ∼ 65535	10	1ms	立即生效		S	Τ

 $0 ms \sim 65535 ms/1000 rpm$

P03.16	加速时间 2	设定范围	出厂值	单位	生效方式	相关模式	t
		0 ∼ 65535	0	1ms	立即生效	S	

 $0 ms \sim 65535 ms/1000 rpm$

P03.17	减速时间 2	设定范围	出厂值	单位	生效方式	相关模式
		0 ∼ 65535	0	1ms	立即生效	S

 $0 \text{ms} \sim 65535 \text{ms}/1000 \text{rpm}$

P03.19	零速钳位功能	设定范围	出厂值	单位	生效方式	相关	模ェ	弐
		0~2	0		立即生效	9		Т

设定零速钳位时的动作。

0: 无效

1: ZERO_SPD 有效时,速度指令强制为 0

2: ZERO_SPD 有效时,速度指令强制为 0, 当电机实际转速低于 P03.20 时,切换到位置

控制,在当前位置进行锁定

P03.20	零速钳位阈值	设定范围	出厂值	单位	生效方式	相关模	注
		0~1000	10	1rpm	立即生效	S	Т

 $0 rpm \sim 1000 rpm$

P03.22	转矩指令来源	设定范围	出厂值	单位	生效方式	相	相关模		相关模式	
		0~4	0		停机生效			Т		

设定转矩控制时的转矩指令来源。

0: 数字给定 (P0325)

1: TQR(使用 AI 输入值作为转矩指令值)

2: 数字设定、TQR 切换(CMD_SEL)

3: 通信给定

4: TQR+数字设定

P03.25	转矩指令键盘设定值	设定范围	出厂值	单位	生效方式	相	关模	式
		-3000 ∼ 3000	0	0.1%	立即生效			Т

-300.0% ~ 300.0%(基于电机额定转矩)

P03.26	转矩控制时速度限制来源选	设定范围	出厂值	单位	生效方式	相	相关模	
	择	0~1	0		立即生效			Т

0: 正反内部速度限制 P03.27、P03.28

1: SPL(使用 AI 输入值作为速度限制值)

P03.27	内部正速度限制	设定范围	出厂值	单位	生效方式	相关	莫式
		0~9000	3000		立即生效		Т

 $0 \text{rpm} \sim 9000 \text{rpm}$

P03.28	内部负速度限制	设定范围	出厂值	单位	生效方式	相关模	美式
		0~9000	3000	-	立即生效		Т

0rpm ∼ 9000rpm

P03.29	硬限位转矩限制	设定范围	出厂值	单位	生效方式	相	关模	式
		0~4000	1000	0.1%	立即生效	Р	S	Т

碰触硬限位时的转矩限制值,-300.0% ~ 300.0%(基于电机额定转矩)。当转矩指令快速上

升,且持续时间超过 P03.30 设定的检测时间,则认为碰到了硬限位。用转矩指令的符号区分 正负向的硬限位。

P03.30	硬限位转矩限制检测时间	设定范围	出厂值	单位	生效方式	相	相关模	
		0~2000	100		立即生效	Р	S	Т

碰触硬限位时的转矩限制检测时间, 0ms ~ 2000ms

P03.31	速度指令序号选择方式	设定范围	出厂值	单位	生效方式	相关模	式
		0~1	0		停机生效	S	

设定内部多段速度控制方式。

0: DI 端子选择

1: 通信选择

P03.32	第 1~第 8 段速度指令使用	设定范围	出厂值	单位	生效方式	相关模式
	的加速时间序号	0~1	0		立即生效	S

0:加速时间1(P03.14设定)

1: 加速时间 2 (P03.16 设定)

P03.33	第 1~第 8 段速度指令使用	设定范围	出厂值	单位	生效方式	相关模式	式
	的减速时间序号	$0\sim1$	0		立即生效	S	

0: 减速时间 1 (P03.15 设定)

1: 减速时间 2 (P03.17 设定)

P03.34	第 9~第 16 段速度指令使	设定范围	出厂值	单位	生效方式	相关模式	Ç
	用的加速时间序号	0~1	0		立即生效	S	

0:加速时间1(P03.14设定)

1: 加速时间 2 (P03.16 设定)

P03.35	第 9~第 16 段速度指令使	设定范围	出厂值	单位	生效方式	相关模式
	用的减速时间序号	0~1	0		立即生效	S

0: 减速时间 1 (P03.15 设定)

1: 减速时间 2(P03.17 设定)

P03.3	6 第1段速度	设定范围	出厂值	单位	生效方式	相关模式	Ĵ
		-9000 ∼ 9000	0	1rpm	立即生效	S	

16 段内部多段速度设定值。

-9000rpm ~ 9000 rpm

P03.37	第2段速度	设定范围	出厂值	单位	生效方式	相关	(模:	ţ
		-9000 ~ 9000	0	1rpm	立即生效		S	

-9000rpm ~ 9000 rpm

P03.38	第3段速度	设定范围	出厂值	单位	生效方式	相关模式
		-9000 ~ 9000	0	1rpm	立即生效	S

-9000rpm \sim 9000rpm

P03.39	第4段速度	设定范围	出厂值	单位	生效方式	相关模式
		-9000 ~ 9000	0	1rpm	立即生效	S

-9000rpm ∼ 9000rpm

P03.40	第5段速度	设定范围	出厂值	单位	生效方式	相关模	式
		-9000 ~ 9000	0	1rpm	立即生效	S	

-9000rpm \sim 9000rpm

P03.41	第6段速度	设定范围	出厂值	单位	生效方式	相关模式
		-9000 ~ 9000	0	1rpm	立即生效	S

-9000rpm \sim 9000rpm

P03.42	第7段速度	设定范围	出厂值	单位	生效方式	相关模式	式
		-9000 ~ 9000	0	1rpm	立即生效	S	

-9000rpm ~ 9000 rpm

P03.43	第8段速度	设定范围	出厂值	单位	生效方式	相关模式
		-9000 ~ 9000	0	1rpm	立即生效	S

-9000rpm ∼ 9000rpm

P03.44	第9段速度	设定范围	出厂值	单位	生效方式	相关模式	t
		-9000 ~ 9000	0	1rpm	立即生效	S	_

-9000rpm ∼ 9000rpm

P03.45	第 10 段速度	设定范围	出厂值	单位	生效方式	相关模式	式
		-9000 ~ 9000	0	1rpm	立即生效	S	

-9000rpm \sim 9000rpm

P03.46	第 11 段速度	设定范围	出厂值	单位	生效方式	相关模式	7
		-9000 ~ 9000	0	1rpm	立即生效	S	

-9000rpm ∼ 9000rpm

P03.47	第 12 段速度	设定范围	出厂值	单位	生效方式	相关模式	ĵ
		-9000 ∼ 9000	0	1rpm	立即生效	S	

-9000rpm ∼ 9000rpm

P03.48	第 13 段速度	设定范围	 出厂值	单位	生效方式	相关模式
103.40	为 13 权处区	以足池田	Щ/ Щ	+ 1 <u>1</u>	エメハル	

					i l		
	-9000 ~ 9000	0	1rnm	立即生效	i l	S	
	3000 3000	J	1 1 1 1 1 1 1 1	7 N 1 1 /	i l	9	

-9000rpm \sim 9000rpm

P03.49	第 14 段速度	设定范围	出厂值	单位	生效方式	相关模式	
		-9000 ~ 9000	0	1rpm	立即生效	S	

-9000rpm \sim 9000rpm

P03.50	第 15 段速度	设定范围	出厂值	单位	生效方式	相关模式
		-9000 ~ 9000	0	1rpm	立即生效	S

-9000rpm \sim 9000rpm

P03.51	第 16 段速度	设定范围	出厂值	单位	生效方式	相关模式	式
		-9000 ~ 9000	0	1rpm	立即生效	S	

-9000rpm ∼ 9000rpm

P04 组 数字输入输出

P04.00	普通 DI 滤波选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0~10000	500	1us	再次上电	Р	S	Т

 $0 \sim 10000$

这项滤波参数只对 DI 端子 1 ~ DI 端子 6 有作用。DI 端子 7 ~ DI 端子 9 的滤波设置参见 P06.44

P04.01	DI1 端子功能选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 63	1		停机生效	Р	S	Т

输入功能编码: 0~63

0: 无定义

 $1\sim63$:参考数字输入(DI)功能定义表,部分 DI 功能未定义,保留

P04.02	DI2 端子功能选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ~ 63	2		停机生效	Р	S	Т

输入功能编码: 0~63

0: 无定义

 $1\sim63$:参考数字输入(DI)功能定义表,部分 DI 功能未定义,保留

P04.03	DI3 端子功能选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ~ 63	39		停机生效	Р	S	Т

输入功能编码: 0~63

0: 无定义

 $1\sim63$:参考数字输入(DI)功能定义表,部分 DI 功能未定义,保留

P04.04	DI4 端子功能选择	设定范围	出厂值	单位	生效方式	相	相关模:	
		0 ~ 63	40		停机生效	Р	S	Т

输入功能编码: 0~63

0: 无定义

 $1\sim63$:参考数字输入(DI)功能定义表,部分 DI 功能未定义,保留

P04.05	DI5 端子功能选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 63	28		停机生效	Р	S	Т

输入功能编码: 0~63

0: 无定义

1~63:参考数字输入(DI)功能定义表,部分DI功能未定义,保留

P04.06	DI6 端子功能选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 63	14		停机生效	Р	S	Т

输入功能编码: 0~63

0: 无定义

 $1\sim63$:参考数字输入(DI)功能定义表,部分 DI 功能未定义,保留

P04.07	DI7 端子功能选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 63	15		停机生效	Р	S	Т

输入功能编码: 0~63

0: 无定义

 $1\sim63$:参考数字输入(DI)功能定义表,部分 DI 功能未定义,保留

P04.08	DI8 端子功能选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 63	0		停机生效	Р	S	Т

输入功能编码: 0~63

0: 无定义

 $1\sim63$:参考数字输入(DI)功能定义表,部分 DI 功能未定义,保留

P04.09	DI9 端子功能选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 63	0		停机生效	Р	S	Т

输入功能编码: 0~63

0: 无定义

 $1\sim63$:参考数字输入(DI)功能定义表,部分 DI 功能未定义,保留

P04.11	DI1 端子逻辑选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0~1	0		停机生效	Р	S	Т

输入极性设定: 0~1

0: 低电平有效 (闭合)

1: 高电平有效(打开)

P04.12	DI2 端子逻辑选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0~1	0		停机生效	Р	S	Т

输入极性设定: 0~1

0: 低电平有效 (闭合)

1: 高电平有效(打开)

P04.13	DI3 端子逻辑选择	设定范围	出厂值	单位	生效方式	相关	模词	式
		0~1	0		停机生效	P S		Т

输入极性设定: 0~1

0: 低电平有效(闭合)

1: 高电平有效(打开)

P04.14	DI4 端子逻辑选择	设定范围	出厂值	单位	生效方式	相	相关模式	
		0~1	0		停机生效	Р	S	Т

输入极性设定: 0~1

0: 低电平有效(闭合)

1: 高电平有效(打开)

P04.15	DI5 端子逻辑选择	设定范围	出厂值	单位	生效方式	相乡	关模	式	
		0~1	0		停机生效	Р	S	Т	

输入极性设定: 0~1

0: 低电平有效(闭合) 1: 高电平有效(打开)

P04.16	DI6 端子逻辑选择	设定范围	出厂值	单位	生效方式	相	相关模式	
		0~1	1		停机生效	Р	S	Т

输入极性设定: 0~1

0: 低电平有效(闭合) 1: 高电平有效(打开)

P04.17	DI7 端子逻辑选择	设定范围	出厂值	单位	生效方式	相乡	关模式	
		0~1	1		停机生效	Р	S	Т

输入极性设定: 0~1

0: 低电平有效(闭合) 1: 高电平有效(打开)

P04.18	DI8 端子逻辑选择	设定范围	出厂值	单位	生效方式	相急	相关模	
		0~1	0		停机生效	Р	S	Т

输入极性设定: 0~1

0: 低电平有效(闭合) 1: 高电平有效(打开)

P04.19	DI9 端子逻辑选择	设定范围	出厂值	单位	生效方式	相差	相关模式	
		0~1	0		停机生效	Р	S	Т

输入极性设定: 0~1

0: 低电平有效(闭合)

1: 高电平有效(打开)

P04.21	DO1 端子功能选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 31	11		停机生效	Р	S	Т

输出功能编码: 1~31

0: 无定义

 $1\sim31$:参考数字输出(DO)功能定义表,部分 DO 功能未定义,保留

P04.22	DO2 端子功能选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ~ 31	2		停机生效	Р	S	Т

输出功能编码: 1~31

0: 无定义

 $1\sim31$:参考数字输出(DO)功能定义表,部分 DO 功能未定义,保留

P04.23	DO3 端子功能选择	设定范围	出厂值	单位	生效方式	相	相关模式	
		0 ~ 31	7		停机生效	Р	S	Т

输出功能编码: 1~31

0: 无定义

 $1\sim31$:参考数字输出(DO)功能定义表,部分 DO 功能未定义,保留

P04.24	DO4 端子功能选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ~ 31	0		停机生效	Р	S	Т

输出功能编码: 1~31

0: 无定义

 $1\sim31$:参考数字输出(DO)功能定义表,部分 DO 功能未定义,保留

P04.25	DO5 端子功能选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ~ 31	0		停机生效	Р	S	Т

输出编码: 1~31

0: 无定义

1~31:参考数字输出(DO)功能定义表,部分 DO 功能未定义,保留

P04.26	DO6 端子功能选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 31	0		停机生效	Р	S	Т

输出功能编码: 1~31

0: 无定义

 $1\sim31$:参考数字输出(DO)功能定义表,部分 DO 功能未定义,保留

P04.27	DO7 端子功能选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ~ 31	0		停机生效	Р	S	Т

输出功能编码: 1~31

0: 无定义

 $1\sim31$:参考数字输出(DO)功能定义表,部分 DO 功能未定义,保留

P04.28	DO8 端子功能选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ~ 31	0		停机生效	Р	S	Т

输出功能编码: 1~31

0: 无定义

1~31:参考数字输出(DO)功能定义表,部分 DO 功能未定义,保留

P04.29	DO9 端子功能选择	设定范围	出厂值	单位	生效方式	相差	关模	式
		0~31	0		停机生效	Р	S	Т

输出功能编码: 1~31

0: 无定义

1~31:参考数字输出(DO)功能定义表,部分DO功能未定义,保留

P04.31	DO1 端子逻辑电平选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0~1	0		停机生效	Р	S	Т

输出极性设定: 0~1

0:有效时导通(常开触点)

1: 有效时不导通(常闭触点)

P04.32	DO2 端子逻辑电平选择	设定范围	出厂值	单位	生效方式	相	相关模式	
		0~1	1		停机生效	Р	S	Т

输出极性设定: 0~1

0:有效时导通(常开触点)1:有效时不导通(常闭触点)

P04.33	DO3 端子逻辑电平选择	设定范围	出厂值	单位	生效方式	相乡	关模	式
		0~1	0		停机生效	Р	S	Т

输出极性设定: 0~1

0:有效时导通(常开触点)

1: 有效时不导通(常闭触点)

P04.34	DO4 端子逻辑电平选择	设定范围	出厂值	单位	生效方式	相关模		式
		0~1	0		停机生效	Р	S	Т

输出极性设定: 0~1

0:有效时导通(常开触点)

1: 有效时不导通(常闭触点)

P04.35	DO5 端子逻辑电平选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0~1	0		停机生效	Р	S	Т

输出极性设定: 0~1

0:有效时导通(常开触点)

1: 有效时不导通(常闭触点)

					i
Λ 1	^	信 和 生	D	_	_
$() \sim 1$	()	 停机生效	1 12 1	5	il

输出极性设定: 0~1

0:有效时导通(常开触点)1:有效时不导通(常闭触点)

P04.37	DO7 端子逻辑电平选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0~1	0		停机生效	Р	S	Т

输出极性设定: 0~1

0:有效时导通(常开触点)1:有效时不导通(常闭触点)

P04.38	DO8 端子逻辑电平选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0~1	0		停机生效	Р	S	Т

输出极性设定: 0~1

0:有效时导通(常开触点)1:有效时不导通(常闭触点)

P04.39	DO9 端子逻辑电平选择	设定范围	出厂值	单位	生效方式	相急	关模	式
		0~1	0		停机生效	Р	S	Т

输出极性设定: 0~1

0:有效时导通(常开触点)1:有效时不导通(常闭触点)

P04.41	FunINL 信号未分配的状态	设定范围	出厂值	单位	生效方式	相乡	关模	式
	(HEX)	0000H ∼ FFFFH	0		再次上电	Р	S	Т

设定 DI 功能的初始状态,对于没有配置给任何 DI 端子的 DI 功能,在上电初始化之后将一直维持此处设定的初始状态。

设定范围(十六进制数) OH ~ FFFFH。

Bit0: 保留

Bit1: 对应 DI 功能 1;

Bit2: 对应 DI 功能 2;

.....

Bit15: 对应 DI 功能 15

P04.42	FunINH 信号未分配的状态	设定范围	出厂值	单位	生效方式	相	关模	式
	(HEX)	0000H ∼ FFFFH	0		再次上电	Р	S	Т

设定范围(十六进制数) OH ~ FFFFH。

Bit0:对应 DI 功能 16; Bit1:对应 DI 功能 17;

• • • • • •

Bit15:对应 DI 功能 31。

对于编号为 32 及更大编号的 DI 功能,不支持用户设定初始状态。

P04.43	电机旋转信号速度门限值	设定范围	出厂值	单位	生效方式	相	相关模	
		0~1000	20	1rpm	立即生效	Р	S	Т

 $0 rpm \sim 1000 rpm$

P04.44	速度一致信号宽度	设定范围	出厂值	单位	生效方式	相关模式
		10 ~ 1000	50	1rpm	立即生效	S

 $10 \text{rpm} \sim 9000 \text{rpm}$

P04.45	速度到达指定值	设定范围	出厂值	单位	生效方式	相	关模	式
		10 ~ 9000	100	1rpm	立即生效	Р	S	Т

10rpm ∼ 9000rpm

P04.47	定位完成范围	设定范围	出厂值	单位	生效方式	相关模		式
		1 ~ 65535	100	1P	立即生效	Р		

1P ∼ 65535P

P04.48	定位完成输出设定	设定范围	出厂值	单位	生效方式	相关模	迁
		0~7	0		立即生效	Р	

- 0: 位置偏差绝对值小于定位完成范围(P04_47)时,输出 COIN 信号;
- 1: 位置偏差绝对值小于定位完成范围(P04_47),且位置指令为0时,输出COIN信号;
- 2: 位置偏差绝对值小于定位完成范围 (P04_47),且位置指令为 0,输出 COIN 信号,保持时间为 P04_49;
- 3: 位置偏差绝对值小于定位完成范围(P04_47),且滤波后的位置指令为 0,输出 COIN 信号;
 - 4: 条件 0,同时零速信号有效时,输出 COIN 信号;
 - 5: 条件 1, 同时零速信号有效时, 输出 COIN 信号;
 - 6: 条件 2, 同时零速信号有效时, 输出 COIN 信号;
 - 7: 条件 3, 同时零速信号有效时, 输出 COIN 信号;

P04.49	定位完成保持时间	设定范围	出厂值	单位	生效方式	相关植	美式
		1 ∼ 65535	1	1ms	立即生效	Р	

 $1 \sim 65535$ ms

P04.50	定位接近范围	设定范围	出厂值	单位	生效方式	相关模	式
		1 ∼ 65535	65535	1P	立即生效	Р	

 $1P \sim 65535P$

P04.51	零速时制动器动作后伺服	设定范围	出厂值	单位	生效方式	相	相关模	
	OFF 延迟时间	0~9999	10	1ms	立即生效	Р	S	Т

0ms ∼ 9999ms

P04.52	运转中制动器动作时的速度	设定范围	出厂值	单位	生效方式	相关	相关模式	
	设定	0 ∼ 3000	100	1rpm	立即生效	Р	S	Т

0rpm ∼ 3000rpm

P04.53	运转中制动器动作时的等待	设定范围	出厂值	单位	生效方式	相	关模	式
	时间	0~9999	10	1ms	立即生效	Р	S	Т

0ms ∼ 9999ms

P04.54	DB 状态设置	设定范围	出厂值	单位	生效方式	相急	关模	式
		0~1	1		再次上电	Р	S	Т

0: DB 无效

1: DB 有效

伺服非使能状态时 DB 状态设置

P04.55	转矩到达指定值	设定范围	出厂值	单位	生效方式	相	关模	式
		0~3000	1000	0.1%	立即生效	Р	S	Т

0.0% ~ 300.0%(基于电机额定转矩)。

检测到实际转矩(绝对值) ≥ (P04.55 + P04.56) 时, DO 功能 12 有效;

检测到实际转矩(绝对值) < (P04.55 + P04.56/4) 时, DO 功能 12 无效;

P04.56	转矩到达检测宽度	设定范围	出厂值	单位	生效方式	相关	έ模	式
		0~3000	200	0.1%	立即生效		S	Т

0.0% ~ 300.0%(基于电机额定转矩)

P04.57	Z 脉冲宽度调整	设定范围	出厂值	单位	生效方式	相急	关模	式
		0~100	0	-	再次上电	Р	S	Т

 $0 \sim 100$

P04.58	零速信号输出门限值	设定范围	出厂值	单位	生效方式	相关模		式
		0~1000	60	1rpm	立即生效	Р	S	Т

 $0\sim1000$ rpm,实际速度低于此阈值之后,DO 功能 5 有效

P04.61	DO1 输出延时	设定范围	出厂值	单位	生效方式	相	关模	式
		0~3000	0		停机生效	Р	S	Т

 $0 \sim 3000 \text{ms}$

DO1 输出端子从无效变有效的延时

P04.62	DO2 输出延时	设定范围	出厂值	单位	生效方式	相急	关模	式
		0~3000	0		停机生效	Р	S	Т

 $0 \sim 3000 \text{ms}$

DO2 输出端子从无效变有效的延时

P04.63	DO3 输出延时	设定范围	出厂值	单位	生效方式	相	关模	式
		0~3000	0		停机生效	Р	S	Т

 $0 \sim 3000 \text{ms}$

DO3 输出端子从无效变有效的延时

P04.64	DO4 输出延时	设定范围	出厂值	单位	生效方式	相	相关模	
		0~3000	0		停机生效	Р	S	Т

 $0 \sim 3000 \text{ms}$

DO4 输出端子从无效变有效的延时

P04.65	DO5 输出延时	设定范围	出厂值	单位	生效方式	相	相关模	
		0~3000	0		停机生效	Р	S	Т

 $0 \sim 3000 \text{ms}$

DO5 输出端子从无效变有效的延时

P04.66	DO6 输出延时	设定范围	出厂值	单位	生效方式	相关	.模ェ	弌
		0 ∼ 3000	0	-	停机生效	יו עו	S	Т

 $0 \sim 3000 ms$

DO6 输出端子从无效变有效的延时

P04.67	DO7 输出延时	设定范围	出厂值	单位	生效方式	相	相关模	
		0~3000	0		停机生效	Р	S	Т

 $0 \sim 3000 ms$

DO7 输出端子从无效变有效的延时

P04.68	DO8 输出延时	设定范围	出厂值	单位	生效方式	相	关模	式
		0~3000	0		停机生效	Р	S	Т

 $0 \sim 3000 \text{ms}$

DO8 输出端子从无效变有效的延时

P04.69	DO9 输出延时	设定范围	出厂值	单位	生效方式	相	关模	式
		0~3000	0		停机生效	Р	S	Т

 $0 \sim 3000 ms$

DO9 输出端子从无效变有效的延时

P04.70	DO10 输出延时	设定范围	出厂值	单位	生效方式	相关	相关模	
		0~3000	0		停机生效	1 12 1	S	Т

 $0 \sim 3000 \text{ms}$

DO10 输出端子从无效变有效的延时

P06 组扩展参数

P06.00	第2电子齿轮分子(32位)	设定范围	出厂值	单位	生效方式	相关模	式
		0~2147483646	1		立即生效	Р	

1 ~ 2147483646

P06.02	第3电子齿轮分子(32位)	设定范围	出厂值	单位	生效方式	相关模	式
		0~2147483646	1		立即生效	Р	

1 ~ 2147483646

P06.04	第 4 电子齿轮分子(32 位)	设定范围	出厂值	单位	生效方式	相关模	式
		0~2147483646	1		立即生效	Р	

1 ∼ 2147483646

P06.06	位置偏差清除功能	设定范围	出厂值	单位	生效方式	相关模式
		0~3	0		立即生效	Р

- 0: 伺服 OFF 及发生故障时清除位置偏差脉冲
- 1: 只在发生故障时清除位置偏差脉冲
- 2: 伺服 OFF 及发生故障时,以及 DI 功能(PER_CLR)有效时清除
- 3: 只通过 DI 功能(PER_CLR)清除

P06.09	电子齿轮比切换延时设置	设定范围	出厂值	单位	生效方式	相关模	注
		0~1	0		停机生效	Р	

0: 位置指令脉冲为 0 持续 10ms 后切换

1: 实时切换

P06.10	势能负载转矩补偿值	设定范围	出厂值	单位	生效方式	相急	关模式
		-100 ∼ 100	0	1%	立即生效	Р	S

补偿重力负载,设定范围-100%~100%

P06.11	P06.10 及摩擦补偿存储选	设定范围	出厂值	单位	生效方式	相关模式	戈
	项	0~2	2		立即生效	P S	

个位:(势能补偿选项)

- 0: 自动更新,掉电存储
- 1: 自动更新,掉电重新初始化成设定值
- 2: 不自动更新
- 3: 势能补偿自动更新,掉电保存。摩擦补偿不自动更新

P06.12	正转摩擦转矩补偿	设定范围	出厂值	单位	生效方式	相	关模:	尤
		-3000 ∼ 3000	0	0.1%	立即生效	Р	S	

0.1%的转矩单位(-300.0~300.0)

P06.13	反转摩擦转矩补偿	设定范围	出厂值	单位	生效方式	相	关模:	式
		-3000 ∼ 3000	0	0.1%	立即生效	Р	S	

0.1%的转矩单位(-300.0~300.0)

P06.14	粘滞摩擦补偿	设定范围	出厂值	单位	生效方式	相	相关模	
		-3000 ∼ 3000	0	0.1%	立即生效	Р	S	

0.1%的转矩单位(-300.0~300.0)

P06.15	摩擦补偿时间常数	设定范围	出厂值	单位	生效方式	相关模		式
		0~10000	0	0.1ms	立即生效	Р	S	

0.1ms 单位(0~1000.0ms)

P06.16	摩擦补偿低速区间	设定范围	出厂值	单位	生效方式	相急	关模:	式
		0 ∼ 500	1	1rpm	立即生效	Р	S	

 $0 \sim 500 \text{rpm}$

P06.19	参数识别速度值	设定范围	出厂值	单位	生效方式	相	关模	式
		100 ~ 1000	500		停机生效	Р	S	

 $100 \sim 1000 rpm$

P06.20	参数识别加速时间	设定范围	出厂值	单位	生效方式	相	关模	式
		50 ~ 10000	100		停机生效	Р	S	

 $50 \sim 10000 \text{ms}$

P06.21	参数识别减速时间	设定范围	出厂值	单位	生效方式	相关	模式
		50 ~ 10000	100		停机生效	P S	`

 $50 \sim 10000 \text{ms}$

P06.22	参数识别模式	设定范围	出厂值	单位	生效方式	相关模式
		0~1	0	-	停机生效	P S

0: 自动调整时,不自动更新惯量;

1: 自动调整时,自动更新惯量

P06.23	初始角度辨识电流限制	设定范围	出厂值	单位	生效方式	相	关模	式
		0~2000	500	0.1%	停机生效	Р	S	Т

0 ~ 200.0%

P06.24	瞬间停电保护	设定范围	出厂值	单位	生效方式	相	相关模:	
		0~2	0		立即生效	Р	S	Т

瞬间停电时,如果可以立即恢复供电,可开启此项保护功能,可在恢复供电之后立即恢复 之前的主电源断电之前的状态。

0:不开启

1: 开启

P06.25	瞬间停电减速时间	设定范围	出厂值	单位	生效方式	相	关模	式
		1~10000	20	1ms	立即生效	Р	S	Т

开启瞬间停电保护之后,停机时使用此停电减速时间。范围是 $0 \, \text{ms} \sim 10000 \, \text{ms}/1000 \, \text{rpm}$

P06.26	伺服 OFF 停机方式	设定范围	出厂值	单位	生效方式	相	相关模	
		0~2	1		停机生效	Р	S	Т

0-自由运行停止,保持自由

1-按 6084h 减速停止,保持自由

2-以急停转矩停止,保持自由

P06.27	故障停机方式选择	设定范围	出厂值	单位	生效方式	相	相关模	
		0~3	1		停机生效	Р	S	Т

0-自由停止,保持自由

1-零速停止,保持自由

2-以急停转矩停止,保持自由

P06.28	超程输入设定	设定范围	出厂值	单位	生效方式	相	相关模式	
		0~1	1		停机生效	Р	S	Т

0: DI 功能 14 (P_OT) 正向驱动禁止、DI 功能 15 (N_OT) 负向驱动禁止

1: 无效

P06.29	超程时的停止方式	设定范围	出厂值	单位	生效方式	相急	相关模式	
		0~3	1		停机生效	Р	S	Т

0: 用户实际位置/速度指令中定义的减速度减速停机,停止之后进入位置锁定,并留在触发停止时的状态;

1: 以 6085h 设置的减速时间停机,停止之后进入位置锁定,并留在触发停止时的状态;

2: 以 6085h 设置的减速时间停机,停止之后进入位置锁定, 并留在触发停止时的状态,且限制超程方向的转矩;

3: 以 6085h 设置的减速时间停机,停止之后进入位置锁定, 并留在触发停止时的状态,且限制超程方向的转矩;

P06.30	电源输入缺相保护选择	设定范围	出厂值	单位	生效方式	相	关模	式
		0~1	0		立即生效	Р	S	Т

0: 使能保护

1: 禁止保护

P06.31	电源输出缺相保护选择	设定范围	出厂值	单位	生效方式			式
		0~1	0		立即生效		. .	Т

0: 使能保护

1: 禁止保护

P06.32	紧急停止转矩	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 5000	3000	0.1%	立即生效	Р	S	Т

0.0% ~ 300.0%(基于电机额定转矩)

P06.33	 设定范围	出厂值	单位	生效方式	相乡	关模	式
	0~1	0		立即生效	Р	S	Т

0: 开启保护

1: 关闭保护

P06.34	过载警告值	设定范围	出厂值	单位	生效方式	相	相关模式	
		1~100	100	1%	立即生效	Р	S	Т

1% ~ 100%

P06.35	电机过载保护系数	设定范围	出厂值	单位	生效方式	相关模式		式
		10 ~ 300	100	1%	立即生效	Р	S	Т

10% ~ 300%

P06.36	欠压保护点	设定范围	出厂值	单位	生效方式	相	关模	式
		50 ∼ 130	100	1%	立即生效	Р	S	Т

50%~100%(100%对应默认的欠压点)

P06.37	过速故障点	设定范围	出厂值	单位	生效方式	相	关模	式
		50 ~ 120	120	1%	立即生效	Р	S	Т

50%~120%(100%对应电机最大转速)

P06.38	脉冲输入最大频率	设定范围	出厂值	单位	生效方式	相差	关模	式
		10 ~ 9000	500	1KHZ	停机生效	Р		

 $10 \sim 4000 \mathrm{K}$

P06.39	对地短路检测保护选择	设定范围	出厂值	单位	生效方式	相关植	美式
		0~1	0	-	立即生效	P S	Т

0: 检测使能(默认)

1:禁止检测

P06.40	编码器干扰检测延时	设定范围	出厂值	单位	生效方式	相关	莫式
		0~99	0	-	立即生效	P S	Т

 $0 \sim 99$

P06.41	脉冲输入滤波设定	设定范围	出厂值	单位	生效方式	相关模式
1 00.71		及处心凹	ш/ ш	 122	T /X/J 1/0	コロノコメンル

	$0 \sim 500$	40	 再次上电	Р	

0~500(单位 10ns)

250KHZ 以下,推荐值 40; 250K ~ 500K, 推荐值 20; 500K ~ 1M, 推荐值 10;

1M 以上推荐值5;

2M 以上设置为 0。

P06.42	脉冲禁止输入设定	设定范围	出厂值	单位	生效方式	相关模式		式
		0~3	0		再次上电	Р		

0: 0.5ms2 次连续一致

1: 0.5ms3 次连续一致

2: 1ms3 次连续一致

3: 2ms3 次连续一致

(脉冲禁止功能只能配置到如下 DI 端子: DI7、DI8、DI9)

P06.43	偏差清零输入设定	设定范围	出厂值	单位	生效方式	相关模式	式
		0~1	0	-	再次上电	Р	

0: 电平有效

1: 边沿有效

(偏差清零功能只能配置到如下 DI 端子: DI7、DI8、DI9)

P06.44	高速 DI 滤波设定	设定范围	出厂值	单位	生效方式	相	相关模:	
		0 ~ 10000	50	1us	再次上电	Р	S	Т

0: 10000us

(只对如下 DI 端子有作用: DI7、DI8、DI9)

P06.45	速度偏差过大阈值	设定范围	出厂值	单位	生效方式	相关模	美式
		0~10000	0	1rpm	立即生效	P S	

设定范围是 $0\sim 10000 \mathrm{rpm}$,但设置为 10 以下的值时,不检测。

速度指令和实际测得的速度的绝对差值超过此范围报故障 Er.16

P06.46	转矩饱和超时时长	设定范围	出厂值	单位	生效方式	相关	. 模:	式
		0 ~ 30000	0	1ms	立即生效	Р	S	Т

设定范围是 0~30000ms,转矩长时间处于饱和状态,持续时间超过此范围报故障 Er.17

P06.47	绝对值系统设定	设定范围	出厂值	单位	生效方式	相	关模	式
		0~19	0		再次上电	Р	S	Т

 $0 \sim 19$

个位:

0: 增量系统

1: 绝对值系统

2: 绝对值系统(Er.12 故障需要手动清除,机器人专用)

3~9: 绝对值系统且报溢出错误;

十位:

0: 电池欠压报警告不停机1: 电池欠压报故障停机

P06.48	编码器电池低压阈值	设定范围	出厂值	单位	生效方式	相关模式		式
		0 ~ 33	30	0.1V	再次上电	Р	S	Т

设定范围是 $0.0\sim3.3\mathrm{V}$,当检测到编码器电池电压低于此值时,根据 P06.47 的设定判断报 故障还是警告。

P06.49	高速脉冲输入滤波	设定范围	出厂值	单位	生效方式	相关模		式
		0 ∼ 500	40		再次上电	1 12 1 1	S	Т

0~500(单位 10ns)

250KHZ 以下,推荐值 40; 250K ~ 500K,推荐值 20; 500K ~ 1M,推荐值 10;

1M 以上推荐值5;

2M 以上设置为 0。

P07组辅助功能

P07.00	面板显示选项	设定范围	出厂值	单位	生效方式	相	关模	式
		0000H ∼ FFFFH	0		立即生效	Р	S	Т

十六进制数,从右往左看各个位,

第1位:显示面板首页显示内容设定,

0,显示系统状态;

设置为 1~5 分别显示 P07.01~ P07.05 设定的显示参数。

其余位保留。

P07.01	面板监控参数设置 1	设定范围	出厂值	单位	生效方式	相	关模	式
		0~79	1		立即生效	Р	S	Т

 $0 \sim 69$,

可在面板直接显示除 P21_00 之外的 P21 组参数。设置为 0 则不显示

P07.02	面板监控参数设置 2	设定范围	出厂值	单位	生效方式	相关模		式
		0 ∼ 79	5		立即生效	Р	S	Т

0~79,同P07_01

P07.03	面板监控参数设置 3	设定范围	出厂值	单位	生效方式	相关模式		式
		0~79	6		立即生效	Р	S	Т

0~79, 同P07_01

P07.04	面板监控参数设置 4	设定范围	出厂值	单位	生效方式	相	关模	式
		0~79	21		立即生效	Р	S	Т

 $0\sim79$,同 $P07_01$

P07.05 面板监控参数设置 5	设定范围	出厂值	单位	生效方式	相关模式
-------------------	------	-----	----	------	------

			1 1		
$0 \sim 79$	23	 立即生效	Р	S	Т

0~79, 同P07_01

P07.08	功能选项 1	设定范围	出厂值	单位	生效方式	相	关模	式
		0000H∼FFFFH	0		立即生效	Р	S	Т

十六进制数,从右往左看各个位,

第1位,搜索原点的时间倍率。

第2位,脉冲禁止时清偏差设定:

0,脉冲禁止时不自动清偏差;

1,脉冲禁止时自动清除偏差。

第3位,搜索原点时的限位检测方式:

设置为 0,通过 DI 功能 14 和 15 检测;

设置为1,通过硬限位转矩限制检测;

设置为 2, DI 功能或硬限位转矩限制检测。

第4位,软限位检测设定:

设置为 0,不检测软限位;

设置为1,上电即开始检测软限位;

设置为 2,回原点完成之后才检测软限位。

P07.09	功能选项 2	设定范围	出厂值	单位	生效方式	相关	模式
		0000H∼FFFFH	0		立即生效	P S	

保留使用

P07.10	用户密码	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0		立即生效	Р	S	Т

 $0\sim65535$

P07.11	断电及时存储功能	设定范围	出厂值	单位	生效方式	相关	模ェ	Ĵ:
		0~1	0		立即生效	P S		Т

0: 不开启

1: 开启

P07.12	用户加密锁屏时间	设定范围	出厂值	单位	生效方式	相	相关模	
		1~30	5	1分钟	立即生效	Р	S	Т

1~30分钟

P07.14	快速减速时间	设定范围	出厂值	单位	生效方式	相	关模	式
		0~9999	5	1ms	停机生效	Р	S	Т

 $0 \text{ms} \sim 9999 \text{ms}$

P07.16	功能选项 3	设定范围	出厂值	单位	生效方式	相	关模	式
		0000H ∼ FFFFH	0		停机生效	Р	S	Т

十六进制数,从右往左看各个位,

第1位:抢断定位指令关联设定,

- 0,不跟随齿轮比调整;
- 1,跟随齿轮比调整。

第2位:抢断定位指令方向设定,

- 0,跟随当前的运行方向;
- 1,由指令值的符号决定。

其余位保留。

P07.17	电机一圈最大等分数	设定范围	出厂值	单位	生效方式	相	相关模	
		0~99	0		立即生效	Р		

把一圈对应脉冲分成 0~99份

P07.19	功能选项 5	设定范围	出厂值	单位	生效方式	相	关模	式
		0000H ∼ FFFFH	0		再次上电	Р	S	Т

十六进制数,从右往左看各个位,

第1位:保留;

第2位:保留;

第3位;位置反馈初始化选择,

如果不是绝对式系统(P06.47 值为 0),则

设置 0: 初始化为 0,

设置 1: 初始化为断电之前的值(要求启用断电存储功能,即 P07.11 设置为 1),

如果是绝对式系统(P06.47 值不为 0),则由编码器值决定;

第 4 位: 绝对位置(P21.07)和位置反馈(P21.17)计数器的位宽选择,

设置 0: 计数器为 32 位, 设置 1: 计数器为 64 位,

使用 64 位计数器时,绝对位置的低 32 位显示在 (P21.07),高 32 位显示在 (P21.56);

位置反馈的低 32 位显示在(P21.17),高 32 位显示在(P21.58)。

P07.20	功能选项 6	设定范围	出厂值	单位	生效方式	相	关模	式
		0000H∼FFFFH	0		再次上电	Р	S	Т

十六进制数,从右往左看各个位,

第1位: 电机型号编码设定选择

设置为0,从编码器读取,

设置为1,手动设定;

第2位:禁止软件过流检测,

设置为0,不禁止,设置为1,禁止;

其余位保留。

P07.21	功能选项 7	设定范围	出厂值	单位	生效方式	相	关模	式
		0000H∼FFFFH	0		立即生效	Р	S	Т

十六进制数,从右往左看各个位,

第1位: 伺服使能时未准备好,

设置为 0,不报故障或警告;

设置为 1,报警告 AL.084;

设置为 2,报故障 Er.040。

第 2 位: Er046 和 Er047 是否允许复位

设置为 0,不允许复位

设置为1,允许复位,需要等待10秒之后方允许复位

第3位: DIDO 监视以二进制显示还是十六进制显示,

设置 0,用二进制显示,

设置 1,用十六进制显示;

其余位保留。

P07.22	功能选项 8	设定范围	出厂值	单位	生效方式	相	关模	式
		0000H ∼ FFFFH	0		立即生效	Р	S	Т

十六进制数,从右往左看各个位,

第1位: 主电源断电(Er.56)检测设定,

设为 0 时,检测故障 Er.56 且可以自动复位;

设为1时,不检测故障 Er.56。

设为 2 时,检测故障 Er.56 但不能自动复位。

第2位:欠压(Er.21)检测设定,

设为 0 时,检测故障 Er.21 且可以自动复位;

设为1时,不检测故障 Er.21。

设为2时,检测故障Er.21但不能自动复位。

第 3 位:是否存储欠压(Er.21)和主电源断电检测(Er.56)故障记录,0 表示不存储,1 表示存

储。

第 4 位:禁止检测控制电欠压故障(Er.18),

设置为0,不禁止,设置为1,禁止。

P07.23	故障复位时机	设定范围	出厂值	单位	生效方式	相	关模	式
		0~1	0		立即生效	Р	S	Т

0: SON 有效时可复位

1: SON 有效时不可复位

P07.24	正向软限位(32 位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	2147483		停机生效	Р	S	Т
		2147483646	646					

正向软限位,位置控制、速度控制、转矩控制模式下都可生效。

P07.26	负向软限位(32 位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 ~	1		停机生效	Р	S	Т

	2147483646	2147483			
		646			

负向软限位,位置控制、速度控制、转矩控制模式下都可生效。

P07.28	回原完成信号保持时间	设定范围	出厂值	单位	生效方式	相关模式
		0~65535	2000	ms	立即生效	Hm

回原模式下,设定 HOME 回原完成 DO 输出有效保持时间,例如出厂值"2000"ms,其意义为:回原完成时,HOME 对应的 DO 逻辑输出电平将置 1,并保持两秒,再清 0,6041h 状态字 BIT12 变化同上。

P08 组 内部位置指令

P08.00	多段预置位置指令执行方式	设定范围	出厂值	单位	生效方式	相关模	式
		0~5	0		停机生效	Р	

- 0: 单次运行
- 1: 循环运行
- 2: DI 端子切换运行
- 3: 通信切换运行
- 4: 单次连续运行
- 5: 循环连续运行

总共 16 段指令,通过 P08.01 设置起始段序号,P08.02 设置终点段序号。对于顺序执行方式,如单次运行,则是从起始段开始,依次执行各段,直到终点段;如循环运行,则是从起始段开始,依次执行各段,直到终点段,然后又从起始段开始执行,如此反复,直到内部位置使能信号失效或者伺服 OFF。

执行方式 2 和 3 是随机执行选定段,通过 DI 端子或者通信选定段序号。

执行方式 4 和 5 ,与 0 和 1 对应,不同之处在于前后两段过渡时当前段无需减速到 0 再启动下一段,执行方式 0 和 1 每一段都需要减速到 0 再启动下一段。

P08.01	起始段序号	设定范围	出厂值	单位	生效方式	相关	莫式
		1 ~ 32	1		立即生效	Р	

设定范围是: 1~ (P08.02)。P08.01 和 P08.02 两个参数互相制约。

P08.02	终点段序号	设定范围	出厂值	单位	生效方式	相关模	注
		1 ~ 32	2		立即生效	Р	

设定范围是: (P08: 01) ~ 16。P08.01 和 P08.02 两个参数互相制约。

P08.03	暂停再启动之后剩余段数处	设定范围	出厂值	单位	生效方式	相关模式
--------	--------------	------	-----	----	------	------

					1	1	
	TITI		_			1	
	理方式	$() \sim 1$	1	 立即生效	ı Pı	1	
1	エンコン	V <u>1</u>	<u> </u>	ᅭᄡᅩᄶ			

0: 运行剩余的段

1: 再次从起始段运行

P08.04	位置指令类型	设定范围	出厂值	单位	生效方式	相关模	江
		0~1	0		停机生效	Р	

0: 相对位置指令

1: 绝对位置指令

P08.05	等待时间的单位	设定范围	出厂值	单位	生效方式	相关	相关模式	
		0~1	0		立即生效	Р		

0: 顺序执行(单次或循环)时段与段之间的等待时间以 ms 为单位。

1: 顺序执行(单次或循环)时段与段之间的等待时间以 s 为单位。

P08.06	第1段位移量(32位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.08	第1段最大速度	设定范围	出厂值	单位	生效方式	相关模式
		1~9000	200	1rpm	立即生效	Р

 $1 \sim 9000 \text{rpm}$,

P08.09	第1段加减速时间	设定范围	出厂值	单位	生效方式	相关模	式
		0 ∼ 65535	10	1ms	立即生效	Р	

0 ∼ 65535ms

P08.10	第1段完成之后等待时间	设定范围	出厂值	单位	生效方式	相急	关模	式
		0 ∼ 65535	0	1ms	立即生效	Р		

 $0\sim65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.11	第2段位移量(32位)	设定范围	出厂值	单位	生效方式	相乡	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.13	第2段最大速度	设定范围	出厂值	单位	生效方式	相关	模:	t
		1~9000	200	1rpm	立即生效	Р		

 $1 \sim 9000 rpm$

P08.14	第2段加减速时间	设定范围	出厂值	单位	生效方式	相急	关模	式
		0 ∼ 65535	10	1ms	立即生效	Р		

 $0 \sim 65535$ ms

P08.15	第2段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关模	江
		0 ~ 65535	0	1ms	立即生效	Р	

0~65535ms 或者 s,具体单位由 P08.05 设定。

P08.16	第3段位移量(32位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.18	第3段最大速度	设定范围	出厂值	单位	生效方式	相关模	式
		1~9000	200	1rpm	立即生效	Р	

$1\,{\sim}\,9000 rpm$

P08.19	第3段加减速时间	设定范围	出厂值	单位	生效方式	相急	关模	式
		0 ∼ 65535	10	1ms	立即生效	Р		

0 ∼ 65535ms

P08.20	第3段完成之后等待时间	设定范围	出厂值	单位	生效方式	相急	相关模	
		0 ∼ 65535	0	1ms	立即生效	Р		

 $0\sim65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.21	第4段位移量(32位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.23	第4段最大速度	设定范围	出厂值	单位	生效方式	相关模	式
		1~9000	200	1rpm	立即生效	Р	

$1\,{\sim}\,9000 rpm$

P08.24	第4段加减速时间	设定范围	出厂值	单位	生效方式	相关模式	式
		0 ∼ 65535	10	1ms	立即生效	Р	

$0 \sim 65535 ms$

P08.25	第 4 段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关模式
1 00.23	70 T 10 10 10 10 10 10 10 10 10 10 10 10 10	及た心凹	щ/ Щ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	エメハル	们人大人

I .						$\overline{}$	
					i		
	0 ~ 65525	Λ	1mc	立即生效	D		
	0.00000	U	TIII2	ᅭᄢᅩᄍ	Г	1 1	i

0~65535ms 或者 s,具体单位由 P08.05 设定。

P08.26	第5段位移量(32位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.28	第5段最大速度	设定范围	出厂值	单位	生效方式	相关	莫式
		1~9000	200	1rpm	立即生效	Р	

 $1 \sim 9000 rpm$

P08.29	第5段加减速时间	设定范围	出厂值	单位	生效方式	相关模	茳
		0 ∼ 65535	10	1ms	立即生效	Р	

 $0 \sim 65535 ms$

P08.30	第 5 段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关模	式
		0 ∼ 65535	0	1ms	立即生效	Р	

0~65535ms 或者 s,具体单位由 P08.05 设定。

P08.31	第6段位移量(32位)	设定范围	出厂值	单位	生效方式	相关	模式	
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

 T						
	$1 \sim 9000$	200	1rpm	立即生效	Р	

$1 \sim 9000 rpm$

P08.34	第6段加减速时间	设定范围	出厂值	单位	生效方式	相关植	莫式
		0 ∼ 65535	10	1ms	立即生效	Р	

 $0 \sim 65535 ms$

P08.35	第6段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关模	美式
		0 ∼ 65535	0	1ms	立即生效	Р	

 $0 \sim 65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.36	第7段位移量(32位)	设定范围	出厂值	单位	生效方式	相急	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.38	第7段最大速度	设定范围	出厂值	单位	生效方式	相	关模	式
		1~9000	200	1rpm	立即生效	Р		

$1 \sim 9000 rpm$

P08.39	第7段加减速时间	设定范围	出厂值	单位	生效方式	相急	相关模式	
		0 ∼ 65535	10	1ms	立即生效	Р		

0 ∼ 65535ms

P08.40	第7段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关	相关模	
		0 ∼ 65535	0	1ms	立即生效	Р		

 $0 \sim 65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.41	第8段位移量(32位)	设定范围	出厂值	单位	生效方式	相差	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.43	第8段最大速度	设定范围	出厂值	单位	生效方式	相急	关模	式
		1~9000	200	1rpm	立即生效	Р		

 $1 \sim 9000 rpm$

P08.44	第8段加减速时间	设定范围	出厂值	单位	生效方式	相急	关模	式
		0 ∼ 65535	10	1ms	立即生效	Р		

 $0 \sim 65535 ms$

P08.45	第8段完成之后等待时间	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ∼ 65535	0	1ms	立即生效	Р		

0~65535ms 或者 s,具体单位由 P08.05 设定。

P08.46	第9段位移量(32位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.48	第9段最大速度	设定范围	出厂值	单位	生效方式	相关模	注
		1~9000	200	1rpm	立即生效	Р	

 $1 \sim 9000 rpm$

P08.49	第9段加减速时间	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	10	1ms	立即生效	Р		

 $0 \sim 65535 ms$

P08.50	第9段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关植	莫式
		0 ∼ 65535	0	1ms	立即生效	Р	

 $0 \sim 65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.51	第 10 段位移量(32 位)	设定范围	出厂值	单位	生效方式	相乡		式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.53	第 10 段最大速度	设定范围	出厂值	单位	生效方式	相关	莫式
		1~9000	200	1rpm	立即生效	Р	

 $1 \sim 9000 rpm$

P08.54	第 10 段加减速时间	设定范围	出厂值	单位	生效方式	相关模	式
		0 ∼ 65535	10	1ms	立即生效	Р	

 $0 \sim 65535$ ms

P08.55	第 10 段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关模	式
		0 ∼ 65535	0	1ms	立即生效	Р	

 $0\sim65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.56	第 11 段位移量(32 位)	设定范围	出厂值	单位	生效方式	相乡	关模式
		-2147483646 <i>~</i>	10000		立即生效	Р	
		2147483646					

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.58	第 11 段最大速度	设定范围	出厂值	单位	生效方式	相急	关模	式
		1~9000	200	1rpm	立即生效	Р		

$1 \sim 9000 rpm$

P08.59	第 11 段加减速时间	设定范围	出厂值	单位	生效方式	相乡		式
		0 ∼ 65535	10	1ms	立即生效	Р		

 $0 \sim 65535 ms$

P08.60	第 11 段完成之后等待时间	设定范围	出厂值	单位	生效方式	相急	关模	式
		0 ∼ 65535	0	1ms	立即生效	Р		

 $0 \sim 65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.61	第 12 段位移量(32 位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.63	第 12 段最大速度	设定范围	出厂值	单位	生效方式	相対	关模	式
		1~9000	200	1rpm	立即生效	Р		

 $1\sim 9000 rpm$

P08.64	第 12 段加减速时间	设定范围	出厂值	单位	生效方式	相乡	相关模	
		0 ∼ 65535	10	1ms	立即生效	Р		

 $0 \sim 65535 ms$

P08.65	第 12 段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关模	式
		0 ∼ 65535	0	1ms	立即生效	Р	

 $0\sim65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.66	第 13 段位移量(32 位)	设定范围	出厂值	单位	生效方式	相急	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.68	第 13 段最大速度	设定范围	出厂值	单位	生效方式	相	关模	式
		1~9000	200	1rpm	立即生效	Р		

 $1 \sim 9000 rpm$

P08.69	第 13 段加减速时间	设定范围	出厂值	单位	生效方式	相关模	式
		0 ~ 65535	10	1ms	立即生效	Р	

 $0 \sim 65535 ms$

P08.70	第 13 段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关植	莫式
		0 ∼ 65535	0	1ms	立即生效	Р	

 $0 \sim 65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.71	第 14 段位移量(32 位)	设定范围	出厂值	单位	生效方式	相关模	辻
		-2147483646 ~	10000		立即生效	Р	

	21/17/1836/16				
	2147483646			ı	

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.73	第 14 段最大速度	设定范围	出厂值	单位	生效方式	相关模	式
		1~9000	200	1rpm	立即生效	Р	

 $1 \sim 9000 rpm$

P08.74	第 14 段加减速时间	设定范围	出厂值	单位	生效方式	相关模	注
		0 ∼ 65535	10	1ms	立即生效	Р	

 $0 \sim 65535$ ms

P08.75	第 14 段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关	模式
		0 ∼ 65535	0	1ms	立即生效	Р	

 $0\sim65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.76	第 15 段位移量(32 位)	设定范围	出厂值	单位	生效方式	相急	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.78	第 15 段最大速度	设定范围	出厂值	单位	生效方式	相关模	美式
		1~9000	200	1rpm	立即生效	Р	

 $1 \sim 9000 rpm$

P08.79	第 15 段加减速时间	设定范围	出厂值	单位	生效方式	相关	莫式
		0 ∼ 65535	10	1ms	立即生效	Р	

$0 \sim 65535 ms$

P08.80	第 15 段完成之后等待时间	设定范围	出厂值	单位	生效方式	相乡	相关模式	
		0 ∼ 65535	0	1ms	立即生效	Р		

 $0 \sim 65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.81	第 16 段位移量(32 位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	10000		立即生效	Р		
		2147483646						

可设置-2147483646 \sim 2147483646 之间的值,设定为正值,表示正的位置指令,负值表示负的位置指令。

P08.83	第 16 段最大速度	设定范围	出厂值	单位	生效方式	相关	€模₃	式
		1~9000	200	1rpm	立即生效	Р		

$1\sim 9000 rpm$

P08.84	第 16 段加减速时间	设定范围	出厂值	单位	生效方式	相关模	江
		0 ∼ 65535	10	1ms	立即生效	Р	

 $0 \sim 65535$ ms

P08.85	第 16 段完成之后等待时间	设定范围	出厂值	单位	生效方式	相关模式	式
		0 ∼ 65535	0	1ms	立即生效	Р	

 $0 \sim 65535$ ms 或者 s,具体单位由 P08.05 设定。

P08.86	位置指令抢断执行设定	设定范围	出厂值	单位	生效方式	相关模	式
		0~4	0		停机生效	Р	

0: 关闭抢断执行功能;

1: 启用,在 DI 信号上升沿时抢断,完成之后自动解除抢断锁定状态;

- 2: 启用,在 DI 信号上升沿时抢断,完成之后通过 DI 信号 XINT_ULK 解除抢断锁定状态;
- 3: 启用,在 DI 信号下降沿时抢断,完成之后自动解除抢断锁定状态;
- 4: 启用,在 DI 信号下降沿时抢断,完成之后通过 DI 信号 XINT_ULK 解除抢断锁定状态

P08.88	原点回归启动方式	设定范围	出厂值	单位	生效方式	相关模	式
		0~4	0		停机生效	Р	

- 0: 关闭
- 1: 通过 DI 功能 STHOME 启动
- 2: 键盘启动
- 3: 通信启动
- 4: 通电第一次伺服 ON 之后立即启动

P08.89	原点回归模式	设定范围	出厂值	单位	生效方式	相关模	式
		0~8	2		停机生效	Р	

- 0: 正转搜索原点,以正极限作为原点
- 1: 反转搜索原点,以负极限作为原点
- 2: 正转搜索原点,以 HOME_IN 信号 OFF→ON 作为原点
- 3: 反转搜索原点,以 HOME_IN 信号 OFF→ON 作为原点
- 4: 正转搜索原点,以 HOME IN 信号 ON→OFF 作为原点
- 5: 反转搜索原点,以 HOME_IN 信号 ON→OFF 作为原点
- 6: 正转直接寻找最近的 Z 信号作为原点
- 7: 反转直接寻找最近的 Z 信号作为原点
- 8: 直接以当前位置作为原点

P08.90	原点回归时限位和 Z 信号设	设定范围	出厂值	单位	生效方式	相关模式
	定	0~5	2		停机生效	Р

设定值意义如下:

0: 回归模式为 $0 \sim 1$ 时,遇到另一侧限位停机并报警(AL.096),返回找 Z 信号,

回归模式为2~5时,遇到限位自动返向,返回找Z信号,

回归模式为6~7时,遇到限位自动返向,直接往前找 Z 信号,

1:回归模式为0~1时,遇到另一侧限位停机并报警(AL.096),返回找Z信号,

回归模式为2~5时,遇到限位自动返向,返回找Z信号,

回归模式为6~7时,遇到限位自动返向,直接往前找 Z 信号,

2: 回归模式为 $0 \sim 1$ 时,遇到另一侧限位停机并报警(AL.096),不找 Z 信号,

回归模式为 2 ~ 5 时,遇到限位自动返向,不找 Z 信号,

回归模式为6~7时,遇到限位自动返向,直接往前找 Z 信号,

3: 回归模式为 $0 \sim 1$ 时,遇到另一侧限位停机并报警(AL.096),返回找 Z 信号,

回归模式为 2 ~ 5 时,遇到限位停机并报警(AL.096),返回找 Z 信号,

回归模式为6~7时,遇到限位停机并报警(AL.096),直接往前找Z信号,

4: 回归模式为 $0 \sim 1$ 时,遇到另一侧限位停机并报警(AL.096),返回找 Z 信号,

回归模式为2~5时,遇到限位停机并报警(AL.096),直接往前找Z信号,

回归模式为6~7时,遇到限位停机并报警(AL.096),直接往前找Z信号,

5: 回归模式为 $0 \sim 1$ 时,遇到另一侧限位停机并报警(AL.096),不找 Z 信号,

回归模式为 2 ~ 5 时,遇到限位停机并报警(AL.096),不找 Z 信号,

回归模式为6~7时,遇到限位停机并报警(AL.096),直接往前找Z信号,

P08.92	高速搜索原点的速度	设定范围	出厂值	单位	生效方式	相关模	試
		1 ~ 3000	500	1rpm	立即生效	Р	

 $1 \sim 3000 \text{rpm}_{\circ}$

原点回归流程启动之后,除非启动时已有减速信号或原点位置信号,否则都以这个速度开始搜索原点。

P08.93	低速搜索原点的速度	设定范围	出厂值	单位	生效方式	相关模	注
		1~300	50	1rpm	立即生效	Р	

 $1 \sim 300 \text{rpm}_{\circ}$

搜索原点时,碰到减速点之后,或者碰到原点位置之后,切换到低速搜索。

P08.94	搜索原点时的加减速时间	设定范围	出厂值	单位	生效方式	相关模	走式
		1~10000	500	1ms	立即生效	Р	

 $1\,{\sim}\,10000\text{ms}$

P08.95	回原点过程时间限定值	设定范围	出厂值	单位	生效方式	相关	莫式
		1 ~ 65535	60000	1ms	立即生效	Р	

$1 \sim 65535 \text{ms}_{\circ}$

设定原点回归流程的限制时间,超过这个时间还没有搜索到原点,则停止搜索原点,并报警 AL.96。如果这里设置的限定时间仍然不够用,可通过 P07.08 的右起第 1 位设置限定时间的倍率。当 P07.08 的右起第 1 位不为 0 时,实际的限定时间是此值与 P07.08 右起第 1 位的乘积。

P08.96	原点坐标偏移(32 位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	0		立即生效	Р		
		2147483646						

设定范围是 -2147483646 ~ 2147483646, 用于调整原点坐标值。注意:这里只是调整坐标值,并不产生实际的位置变化。

P08.98	机械原点位置偏移量(32	设定范围	出厂值	单位	生效方式	相	相关模式	
	位)	-2147483646 <i>~</i>	0		立即生效	Р		
		2147483646						

设定范围是 -2147483646 ~ 2147483646, 用于在找到原点位置之后再移动一段距离。

P09 组 通信设定

P09.00	伺服轴地址编号	设定范围	出厂值	单位	生效方式	相差	关模	式	
		1 ~ 247	1		立即生效	Р	S	Т	

 $1\sim247$,0 为广播地址。用于通信,支持 Modbus、CANOpen 等等。

P09.01	Modbus 波特率	设定范围	出厂值	单位	生效方式	相	相关模	
		0~6	2		立即生效	Р	S	Т

支持的波特率及对于设定如下:

0: 2400

1: 4800

2: 9600

3: 19200

4: 38400

5: 57600

6: 115200

P09.02	Modbus 数据格式	设定范围	出厂值	单位	生效方式	相	相关模式	
		0~3	0		立即生效	Р	S	Т

0: 无校验,2个停止位

1: 偶校验,1个停止位

2: 奇校验,1个停止位

3: 无校验,1个停止位

P09.03	通信超时	设定范围	出厂值	单位	生效方式	相		
		0~9999	0	1ms	立即生效	Р	S	Т

监视通信总线在设定时间内是否有数据

P09.04	通信应答延时	设定范围	出厂值	单位	生效方式	相	相关模式	
		0~9999	0	1ms	立即生效	Р	S	Т

接收数据之后延迟设定时间之后再应答

P09.05	通信控制 DI 使能设定 1	设定范围	出厂值	单位	生效方式	相急	关模	式
		0000H ∼ FFFFH	0		停机生效	Р	S	Т

此参数在面板上以十六进制形式显示,其中每一个二进制位表示一个 DI 功能,BIT0 保留,BIT1 \sim BIT15 分别对应 DI 功能 $1\sim 15$ 。二进制位的值表示是否启用通信控制相应 DI 功能:

0: 不启用;

1: 启用。

P09.06	通信控制 DI 使能设定 2	设定范围	出厂值	单位	生效方式	相	相关模式	
		0000H \sim FFFFH	0		停机生效	Р	S	Т

此参数在面板上以十六进制形式显示,其中每一个二进制位表示一个 DI 功能,BIT0 \sim BIT15 分别对应 DI 功能 $16\sim31$ 。二进制位的值表示是否启用通信控制相应 DI 功能:

0: 不启用;

1: 启用

P09.07	通信控制 DI 使能设定 3	设定范围	出厂值	单位	生效方式	相急	关模	式
		0000H∼FFFFH	0		停机生效	Р	S	Т

此参数在面板上以十六进制形式显示,其中每一个二进制位表示一个 DI 功能,BIT0 ~ BIT15 分别对应 DI 功能 32 ~ 47。二进制位的值表示是否启用通信控制相应 DI 功能:

0: 不启用;

1: 启用

P09.08	通信控制 DI 使能设定 4	设定范围	出厂值	单位	生效方式	相	关模	式
		0000H∼FFFFH	0		停机生效	Р	S	Т

此参数在面板上以十六进制形式显示,其中每一个二进制位表示一个 DI 功能,BIT0 \sim BIT15 分别对应 DI 功能 48 \sim 63。二进制位的值表示是否启用通信控制相应 DI 功能:

0: 不启用;

1: 启用

P09.09	通信控制 DO 使能设定 1	设定范围	出厂值	单位	生效方式	相	相关模式	
		0000H∼FFFFH	0		停机生效	Р	S	Т

此参数在面板上以十六进制形式显示,其中每一个二进制位表示一个 DO 功能,BIT0 保留,BIT1 \sim BIT15 分别对应 DO 功能 1 \sim 15。二进制位的值表示是否启用通信输出相应 DO 功能:

0: 不启用;

1: 启用

P09.10	通信控制 DO 使能设定 2	设定范围	出厂值	单位	生效方式	相乡	相关模	
		0000H∼FFFFH	0	-	停机生效	Р	S	Т

此参数在面板上以十六进制形式显示,其中每一个二进制位表示一个 DO 功能,BIT0 ~ BIT15 分别对应 DO 功能 16 ~ 31。二进制位的值表示是否启用通信输出相应 DO 功能:

0: 不启用;

1: 启用

P09.11	通信设定命令值维持时间	设定范围	出厂值	单位	生效方式	相	相关模式	
		0~60	5		立即生效	Р	S	Т

通信写入命令值之后,在通信断开时,继续维持原状的时间,可设定 $0 \sim 60$,单位为秒,设定为 0 表示 0.5 秒.

P09.12	选择启用 AO 功能或者 CAN	设定范围	出厂值	单位	生效方式	相关	: 模:	式
	通信	0000H∼FFFFH	0		再次上电	Р	S	Т

十六进制数,从右往左看各个位,

第1位:

0,启用 CANOpen 通信;

1, 启用 AO 功能;

其余位保留。

P09.13	总线通信配置 1	设定范围	出厂值	单位	生效方式	相	相关模式	
		0000H∼FFFFH	5		停机生效	Р	S	Т

十六进制数,从右往左看各个位,

第1位,CAN 通信波特率:

0: 20k; 1: 50k; 2: 100k; 3: 125k;

4: 250k; 5: 500k; 6: 800k; 7: 1M

第2位: 电子齿轮比选择

0: 使用 P00.08 等伺服内部齿轮比

1: 使用 608Fh*6091h/6092h 电子齿轮比

第3位:速度指令单位选择

0: rpm 1: 指令/秒

第4位:加速单位选择

0: 0-1000rpm 加速时间(单位 ms)

1: 加速度(指令/s^2)

P09.14	总线通信配置 2	设定范围	出厂值	单位	生效方式	相乡	关模	式
		0000H ∼ FFFFH	0		停机生效	Р	S	Т

十六进制数,从右往左看各位(Ehercat)

第1位: CSP 模式 BIT10 选择

0: 无效 1: 有效

第 2 位: 绝对式系统(P06.47=2)原点完成标志存储设定

0: 不存储 1: 存储

第3位: 603Fh 显示选择

0: 协议故障码 1: J3 内部故障码

P09.15	总线通信配置 3	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0		立即生效	Р	S	Т

十六进制数,从右往左看各位

第1位:模数模式下位置反馈选择

0:6064 计数范围从 0 到模态值减 1 (齿轮比为 1 时)

1: 6064 计数范围跟随 607A 一致,重上电时只保存模态值

第3位:回原偏置(607C)写零值选择

0: 不保存 1: 保存

第 4 位:回原完成切 CSP 模式 bit15 选择

0: 不清除 1: 清除

P09.16	总线断线检测	设定范围	出厂值	单位	生效方式	相	关模	式
		0~300	12		立即生效	Р	S	Т

 $1\sim300$,EtherCAT 断线检出次数,同步数据丢失次数到达该值时,报出 Er.77 故障

P09.17	总线通信配置 4	设定范围	出厂值	单位	生效方式	相	相关模式	
		0 ~ 65535	1011		立即生效	Р	S	Т

十六进制数,从右往左看各位

第1位: CSP 模式最大速度选择

0: 电机最大速度限制,超过最大速度会报出 ER.78 号指令异常故障

1: 最大速度按 6080h 值,超过不报故障,但可能导致定位错误

第2位:设置同步偏移

第3位:停在原点再次进行回原选择:

0: 不动 1: 重新动作找原

第 4 位: 限位对齐功能选择

0: 关闭 1: 开启

P09.18	伺服从站号设置	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 65535	0		立即生效	Р	S	Т

1~65536, Ethercat 从站号设置

0:由上位机写入 ESC EPROM 中的地址确定从站 ALIAS 地址; 其它值时,P09.18 设定从站 ALIAS 地址;当采用自动增量寻址时 ALIAS 地址忽略

P09.20	一体机轴号设置	设定范围	出厂值	单位	生效方式	相关模		式
		0 ∼ 255	1		立即生效	Р	S	Т

服轴内部编号

1~255

P09.21	一体机功能配置	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0		立即生效	Р	S	Т

十六进制数,从右往左看各位

第1位: 自动寻址选择

0: 开启 1: 关闭

第2位:驱动器功率自识别选择

0: 开启1: 关闭

P14 组 整流单元功能参数

注意: P14 组为整流单元功能码,如需修改设置该参数,请通过面板按键设定。

P14.00	当前从机通信第 x 台	设定范围	出厂值	单位	生效方式	相	相关模	
		1 ~ 25	1	1	仅显示	Р	S	Т

显示当前从机通信第 x 台(栈号显示),即 P14.04 所设置的值

P14.01	起始从机第 y 台	设定范围	出厂值	单位	生效方式	相	关模	!式
		1 ∼ 255	1	1	立即生效	Р	S	Т

设置从机从第 y 台开始显示,默认从 1 台开始

P14.02	终止从机第 z 台	设定范围	出厂值	单位	生效方式	相关模		式
		1 ~ 255	1	1	立即生效	Р	S	Т

设置从机第 z 台终止显示, 默认第 1 台终止

P14.03	保留	设定范围	出厂值	单位	生效方式	相关模		式
						ı	ı	-

P14.04	从机操作第 n 台	设定范围	出厂值	单位	生效方式	相	关模	試
		1 ∼ 255	1	1	立即生效	Р	S	Т

设置面板操作逆变单元通讯轴号

P14.05	整流故障记录的显示	设定范围	出厂值	单位	生效方式	相	关模	!式
		0~9	0	1	立即生效	Р	S	Т

可设置 0 \sim 9,查看 10 次故障记录。当前有故障时,设置为 0,显示当前故障码;当前无故障时,显示最近的 10 次故障记录。

0: 当前故障

1: 前1次故障

2: 前 2 次故障

• • • • • • •

9: 前 9 次故障

显示的故障码在 P14.06 中查看

P14.06	整流故障码	设定范围	出厂值	单位	生效方式	相	关模	!式
		0 ∼ 65535	0	1	仅显示	Р	S	Т

整流故障码显示

P14.07	整流单元温度	设定范围	出厂值	单位	生效方式	相	关模	試
		0 ∼ 65535	0	1	仅显示	Р	S	Т

实时显示整流单元温度

P14.08	整流单元直流母线电压	设定范围	出厂值	单位	生效方式	相	关模	!式
		0 ~ 65535	0	0.1V	仅显示	Р	S	Т

实时显示整流单元直流母线电压值

P14.09	整流的状态标志位	设定范围	出厂值	单位	生效方式	相	关模	!式
		0 ~ 63	0	1	仅显示	Р	S	Т

整流的状态标志位(需要转为二进制数),0表示不正常,1表示正常(第6位除外)

第1位: PL 主输入缺相

第2位: CTR_24V 控制电信号

第3位:制动IGBT故障,BRAKE_ERR信号

第 4 位: 母线 IGBT 故障, BUS_ERR 信号

第5位: 母线电压过高,制动信号 BRAKE

第6位: 母线信号0正常输出母线1关闭母线输出

P14.10	整流掉电保存	设定范围	出厂值	单位	生效方式	相	关模	試
		0~1	0	1	立即生效	Р	S	Т

整流单元掉电保存

0: 不开启

1: 开启

P14.11	整流故障清除	设定范围	出厂值	单位	生效方式	相关模		式
		0~1	0	1	立即生效	Р	S	Т

整流单元故障清除

0: 无操作

1: 清除故障

P14.12	整流恢复出厂参数	设定范围	出厂值	单位	生效方式	相急	关模	!式
		0~2	0	1	立即生效	Р	S	Т

整流单元恢复出厂参数

0: 无操作

1:恢复出厂设定值

2: 清除故障记录

P14.13	整流制动电压点	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ∼ 65535	390	1	立即生效	Р	S	Т

整流制动电压点(默认为 390V)

P14.14	功能选项 14_1	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ FFFF	0001	1	立即生效	Р	S	Т

十六进制数,从右往左看各个位

第1位:禁止检测主回路输入缺相(Err.44)

0: 检测故障 Err.44 1: 不检测 Err.44

第 2 位: 欠压(Err.21)检测设定

0: 检测故障 Err.21 且可以自动复位

1: 不检测故障 Err.21

2: 检测故障 Err.21 但是不能自动复位

第 3 位: 欠压(Err.56)检测设定

0: 检测故障 Err.56 且可以自动复位

1: 不检测故障 Err.56

2: 检测故障 Err.56 但是不能自动复位

第 4 位:禁止检测控制电欠压故障(Err.18)

0: 不禁止

1: 禁止

P14.15	功能选项 14_2	设定范围	出厂值	单位	生效方式	相	关模	試
		0 ∼ FFFF	0100		立即生效	Р	S	Т

十六进制数,从14功能选项右往左看各个位,

第1位: Err.56和 Err.21等故障码存储选择

1: 存储

0: 不存储

第3位:整流单元风扇启动选择

0:与伺服驱动轴使能无关,整流单元温度达 40℃ 启动风扇

1: 任意一个伺服驱动轴使能,风扇立即启动

P14.16	整流单元版本号	设定范围	出厂值	单位	生效方式	相	关模	試
		0 ∼ 65535	0	1	仅显示	Р	S	Т

整流版本号

P14.17	整流单元欠压保护点	设定范围	出厂值	单位	生效方式	相	关模	試
		50 ∼ 130	100	1	立即生效	Р	S	Т

50%~130%(100%对应默认的欠压点)

100%对应母线电压约为 195V,参数 P14.08 可以查看母线电压值。

P14.18	版本日期	设定范围	出厂值	单位	生效方式	相急	关模	試
				1	立即生效	Р	S	Т

显示当前整流固件版本日期

P14.19	功能选项 14_3	设定范围	出厂值	单位	生效方式	相	关模	注
		0∼FFFF	0	1	立即生效	Р	S	Т

十六进制数,从14功能选项右往左看各个位,

第2位: 自动地址功能选择

0: 开启 1: 关闭

第 4 位: 风扇故障检测设置

0: 开启风扇故障检测1: 屏蔽风扇故障检测

P14.20	逆变总数	设定范围	出厂值	单位	生效方式	相乡	く 模	式
		0 ∼ 65535	0	1	立即生效	Р	S	Т

读取到的逆变总数

P14.23	功能选项 14_4	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0	1	立即生效	Р	S	Т

第一位:设置 P14.02 上电时是否跟随自动地址来设置

- 0: 跟随;
- 1: 不跟随;

第二位:整流总线版本 P14.16 显示(仅限 4KW 整流)

- 0: 自动识别
- 1: CANopen
- 2: EtherCAT

P18组 电机型号

P18.00	电机型号编码(32 位)	设定范围	出厂值	单位	生效方式	相	相关模: P S	
		00000000H ∼	1964114		再次上电	Р	_	Т
		EFFFFFFH	433					

电机型号的编码规则如下: XXXYZMNN

(1) XXX: 马达的定额输出(3 位) 例 751 --- 750W

(2) Y: 电压规格 2: AC200V,6: AC380V

(3) Z: 转子惯量环规格 0: 低惯量(MA 40 \sim 130 法兰),1: 中惯量(MM 40 \sim 130 法兰),2:

高惯量(MH 40 ~ 130 法兰),4: 中惯量(MG 40 ~ 130 法兰),5: 低惯量(MA 180 ~ 220 法兰),

6: 低惯量(MN 14/25 法兰), 7: 中惯量(MM 180 ~ 220 法兰), 8: 高惯量(MG 180 ~ 220 法

兰), 9: 高惯量(MH 180~220 法兰)

(4) M: 系列号 0: X3 电机, 1: X2 电机, 2: X1 电机, 3: X6 电机

(5) N: 编码器位数 0: 17 位, 1: 23 位

(6) N: 设计序号

P20 组 键盘和通信操控接口

P20.00	键盘 JOG 试运行	设定范围	出厂值	单位	生效方式	相	关模	式
		0~2000	0		停机生效	Р	S	Т

0~额定转速

P20.01	故障复位	设定范围	出厂值	单位	生效方式	相	关模	式
		0~9	0		停机生效	Р	S	Т

0: 无操作

1: 故障复位

P20.03	参数辨识功能	设定范围	出厂值	单位	生效方式	相乡	关模	式
		0~5	0		停机生效	Р	S	Т

0: 无操作

1: 启动正转惯量辨识

2: 启动反转惯量辨识

3: 保留

4: 保留

5: 启动初始角辨识

P20.05	模拟输入自动校正	设定范围	出厂值	单位	生效方式	相	相关模	
		0~2	0		停机生效	Р	S	Т

0: 无操作

1~2: Al1~Al2 调整

P20.06	系统初始化功能	设定范围	出厂值	单位	生效方式	相乡	相关模:	
		0~99	0		再次上电	Р	S	Т

0: 无操作

1: 恢复出厂设定值(不含厂家参数)

2: 清除故障记录

7: 绝对值编码器复位,复位清零 P21.32

8: 绝对值编码器复位,复位清零 P21.32 和 P21.07

9: 保存 6000 组对象写入值(先写 6000 组值,再 P20.06 设 9)

10: 恢复 6000 组对象值, P20.06 设 10, 重上电恢复为出厂值

其余: 保留

P20.08	通信操作命令输入	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0		立即生效	Р	S	Т

0: 无操作或停止操作

 $1 \sim 3000$,点动转速,单位为: rpm

1102H-通信点动正转

1103H-通信点动反转

1300H-启动正转惯量辨识

1301H-启动反转惯量辨识

1302H-存储辨识的惯量值

1500H-启动初始角辨识

P20.09	通信操作状态输出	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0		仅显示	Р	S	Т

 $0 \sim 65535$

供通信读取

- 0: 辨识还在进行,
- 1: 辨识过程故障,
- 2: 辨识完成,
- 3: 辨识参数已存储

P20.11	通信选择多段指令序号	设定范围	出厂值	单位	生效方式	相決	 模式
		0~32	0		立即生效	Р	S

 $0 \sim 32$

P20.12	通信启动原点回归	设定范围	出厂值	单位	生效方式	相关模	式
		0~9	0		立即生效	Р	

0: 无操作

1: 启动

P21 组 状态参数

P21.00	伺服状态	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ∼ 65535	0		仅显示	Р	S	Т

实时显示驱动器的状态。

有如下标志: rdy、run、Er.00~99(故障)、AL.00~99(警告)

P21.01	电机转速反馈	设定范围	出厂值	单位	生效方式	相	关模	式
		-9000 ∼ 9000	0	1rpm	仅显示	Р	S	Т

实时显示电机的转速,单位是 1rpm

P21.03	速度指令	设定范围	出厂值	单位	生效方式	相	相关模	
		-9000 ~ 9000	0	1rpm	仅显示	Р	S	Т

实时显示当前的速度指令,单位是 rpm

P21.04	内部转矩指令(相对于额定	设定范围	出厂值	单位	生效方式	相	关模	式
	转矩)	-5000 ∼ 5000	0	0.1%	仅显示	Р	S	Т

实时显示内部转矩指令,单位是 0.1%,即对应额定转矩的百分比。

P21.05	相电流有效值	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0	0.01A	仅显示	Р	S	Т

实时显示 U 相电流有效值,单位是 0.01A

					1 - 1 - 1 - 11
│P21.06 │ 母线电压值	i 设定范围	■ 出厂值	单位	生效方式	相关模式
1 FZ1.00 1 445X HJ I I I				$\pm xx \cap x_0$	

				_		1 /	1
	$0 \sim 65535$	0	0 1V	仅显示	Р	ς	ΙTΙ
	0 - 05555	U	O. ± v	マポンパ	, ,		

实时显示母线电压值,单位是 0.1V

P21.07	绝对位置计数器(32位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	0	1Unit	仅显示	Р	S	Т
		2147483646						

实时显示绝对位置累计值,单位是指令单位。

显示值的范围是: -2147483646 ~ 2147483646

P21.09	电气角度	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ∼ 65535	0	0.1 度	仅显示	Р	S	Т

实时显示电气角度值

显示值的范围是: 0.0~360.0度

P21.1	0 机械角度(相对于编码器零	设定范围	出厂值	单位	生效方式	相差	相关模	
	点)	0 ∼ 65535	0	0.1 度	仅显示	Р	S	Т

实时显示电机转轴的角度值

0.0~360.0 度

P21.11	辨识的惯量值	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0	0.01 kg	仅显示	Р	S	Т
				c m²				

显示在线实时辨识的惯量值,范围在 $0.01~kg~c~m^2\sim 655.35~kg~c~m^2$ 之间。

P21.12	输入位置指令对应速度信息	设定范围	出厂值	单位	生效方式	相	关模	注
		-9000 ∼ 9000	0	1rpm	仅显示	Р	S	Т

实时显示输入位置指令对应的速度值,以 rpm 为单位。

P21.13	位置偏差计数器(32 位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	0	1P	仅显示	Р	S	Т
		2147483646						

实时显示位置偏差值,单位是编码器最小分辨率。

显示值的范围是: -2147483646 ~ 2147483646

P21.15	输入指令脉冲计数器(32	设定范围	出厂值	单位	生效方式	相	关模	迁
	位)	-2147483646 ~	0	1Unit	仅显示	Р	S	Т
		2147483646						

实时显示输入指令脉冲的总数,单位是指令单位。

显示值的范围是: -2147483646 ~ 2147483646

P21.17	反馈脉冲计数器(32 位)	设定范围	出厂值	单位	生效方式	相	关模	式
		-2147483646 <i>~</i>	0	1P	仅显示	Р	S	Т
		2147483646						

实时显示位置反馈累计值,单位是编码器最小分辨率。

显示值的范围是: -2147483646 ~ 2147483646

P21.19	位置偏差计数器指令单位	设定范围	出厂值	单位	生效方式	相	关模	式
	(32位)	-2147483646 <i>~</i>	0	1Unit	仅显示	Р	S	Т
		2147483646						

以指令单位的形式实时显示位置偏差。

P21.21	数字输入信号监视	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 511	0		仅显示	Р	S	Т

面板上实时显示 DI1 ~ DI9 的状态。

P07.21 的右起第 3 位为 0 时,当前 DI 端口为高电平时,数码管显示上半段,为低电平时,显示下半段,从右至左依次是 DI1 \sim DI9。

P07.21 的右起第 3 位为 1 时,高电平时,用二进制 1 表示,为低电平时,用二进制 0 表示,DI1 \sim DI9 分别使用二进制位 BIT0 \sim BIT8。

P21.23	数字输出信号监视	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 511	0		仅显示	Р	S	Т

面板上实时显示 DO1 \sim DO9 的状态。

P07.21 的右起第 3 位为 0 时,当前 DO 端口输出高电平时,数码管显示上半段,输出低电平时,显示下半段,从右至左依次是 DO1 \sim DO9。

P07.21 的右起第 3 位为 1 时,输出高电平时,用二进制 1 表示,输出低电平时,用二进制 0 表示,DO1 \sim DO9 分别使用二进制位 BIT0 \sim BIT8。

P21.24	编码器状态	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ∼ 65535	0		仅显示	Р	S	Т

保留参数

P21.25	总上电时间(32 位)	设定范围	出厂值	单位	生效方式	相	相关模	
		0~2147483646	0	0.1s	仅显示	Р	S	Т

实时显示驱动器累加总的上电时间值。

显示值的范围是: 0.0: 214748364.7s

P21.27	AI1 电压校正值	设定范围	出厂值	单位	生效方式	相	相关模	
		-32768 ∼ 32767	0	1mV	仅显示	Р	S	Τ

实时显示 AI1 的电压值,已经过校正处理。

P21.28	AI2 电压校正值	设定范围	出厂值	单位	生效方式	相	相关模:	
		-32768 ∼ 32767	0	1mV	仅显示	Р	S	Т

实时显示 AI2 的电压值,已经过校正处理。

P21.29	AI1 电压原始值	设定范围	出厂值	单位	生效方式	相	相关模	
		-32768 ~ 32767	0	1mV	仅显示	Р	S	Т

实时显示 AI1 的原始电压值,还未经过校正处理

P21.30	AI2 电压原始值	设定范围	出厂值	单位	生效方式	相	关模	式
		-32768 ∼ 32767	0	1mV	仅显示	Р	S	Т

实时显示 AI2 的原始电压值,还未经过校正处理

P21.31	模块温度值	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0	1°C	仅显示	Р	S	Т

实时显示模块温度值

P21.32	绝对位置编码器圈数(32	设定范围	出厂值	单位	生效方式	相	关模	式
	位)	-2147483646 <i>~</i>	0		仅显示	Р	S	Т
		2147483646						

记录绝对位置转过的圈数

P21.34	绝对位置编码器单圈位置	设定范围	出厂值	单位	生效方式	相	关模	式
	(32位)	-2147483646 <i>~</i>	0	1P	仅显示	Р	S	Т
		2147483646						

记录绝对位置不足一圈的编码器脉冲数

P21.36	版本号1	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ∼ 65535	0	0.01	仅显示	Р	S	Т

显示软件版本号

P21.37	版本号 2	设定范围	出厂值	单位	生效方式	相关模		式
		0 ∼ 65535	0	0.01	仅显示	Р	S	Т

显示软件版本号

P21.38	版本号3	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ~ 65535	0	0.01	仅显示	Р	S	Т

显示软件版本号

P21.39	产品系列代号	设定范围	出厂值	单位	生效方式	相关模		式
		0 ∼ 65535	0		仅显示	Р	S	Т

PP.XXX

P21.40	故障记录的显示	设定范围	出厂值	单位	生效方式	相	相关模	
		0~9	0		立即生效	Р	S	Т

可设定为 0 \sim 9,可查看 10 次故障记录。当前有故障时,设置为 0,显示当前故障记录; 当前无故障时,显示最近的 10 次故障记录。

0: 当前故障种

1: 前1次故障

2: 前 2 次故障

.....

9: 前 9 次故障

P21.41	故障码	设定范围	出厂值	单位	生效方式	相	相关模	
		0 ∼ 65535	0		仅显示	Р	S	Т

故障码,相应的值意义请参考报警代码一览表

P21.42	所选故障时间戳(32位)	设定范围	出厂值	单位	生效方式	相	相关模	
		0~2147483646	0	0.1s	仅显示	Р	S	Т

发生故障时的总上电时间累计值。

P21.44	所选故障时当前转速	设定范围	出厂值	单位	生效方式	相	关模	式
		-9000 ~ 9000	0	1rpm	仅显示	Р	S	Т

发生故障时的电机转速。

P21.45	所选故障时当前电流 U	设定范围	出厂值	单位	生效方式	相:	关模	式
		0 ∼ 65535	0	0.01A	仅显示	Р	S	Т

发生故障时的 U 相电流有效值。

P21.47	所选故障时母线电压	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0	0.1V	仅显示	Р	S	Т

发生故障时的母线电压值。

P21.48	故障时输入端子状态	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 511	0		仅显示	Р	S	Т

发生故障时 DI1 \sim DI9 的状态。当前 DI 端口为高电平时,数码管显示上半段,为低电平时,显示下半段。

P21.49	所选故障时输出端子状态	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 511	0		仅显示	Р	S	Т

发生故障时 DO1 \sim DO9 的状态。当前 DI 端口为高电平时,数码管显示上半段,为低电平时,显示下半段。

P21.50	定制版软件版本号	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0	0.01	仅显示	Р	S	Т

定制版软件版本号

P21.51	负载率	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 500	0	1%	仅显示	Р	S	Т

-

P21.52	再生负载率	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 500	0	1%	仅显示	Р	S	Т

_

P21.53	内部警告代码	设定范围	出厂值	单位	生效方式	相:	关模	:式	
		0 ∼ 65535	0		仅显示	Р	S	Т	

实时显示内部警告代码

P21.54	内部指令当前段序号	设定范围	出厂值	单位	生效方式	相	关模	式
		0~99	0		仅显示	Р	S	Т

显示内部多段位置指令当前正在执行段的序号

P21.55	定制版系列号	设定范围	出厂值	单位	生效方式	相	关模	式
		0 ∼ 65535	0		仅显示	Р	S	Т

定制版系列号

P21.56	绝对位置计数器高 32 位	设定范围	出厂值	单位	生效方式	相	关模	迁
	(32位)	-2147483646 <i>~</i>	0		仅显示	Р	S	Т
		2147483646						

P07.19 的第 4 位为 1 时,绝对位置为 64 位计数,这里显示它的高 32 位,单位是指令单位。

P21.58	反馈脉冲计数器高 32 位	设定范围	出厂值	单位	生效方式	相	关模	式
	(32 位)	-2147483646 <i>~</i>	0		仅显示	Р	S	Т
		2147483646						

P07.19 的第 4 位为 1 时,反馈脉冲采用 64 位计数,这里显示它的高 32 位,单位是编码器 单位

数字量输入 DI 功能定义表

设定值	符号	名称	说明
1	S_ON	伺服使能	无效-伺服电机使能禁止 有效-伺服电机上电使能
2	ER_RST	报警复位信号(沿 有效功能)	按照报警类型,有些报警复位后伺服可以 继续工作。此功能是沿有效电平,当设端 子为电平有效时,仅检测到沿变化时有效
3	GAIN_SEL	比例动作切换/增益 切换	无效-速度控制环为 PI 控制 有效-速度控制环为 P 控制
4	CMD_SEL	主辅运行指令切换	无效-当前运行指令为 A 有效-当前运行指令为 B
5	PER_CLR	脉冲偏差清除	无效-不动作 有效-清除脉冲偏差。
6	MI_SEL1	切换 16 段运行指令	
7	MI_SEL2	切换 16 个运行指令	通过 DI 端子选择 16 个位置指令或速度指
8	MI_SEL3	切换 16 个运行指令	令执行
9	MI_SEL4	切换 16 个运行指令	
10	MODE_SEL	 模式切换选择 	根据选择的控制模式(3、4、5),进行速度、位置、转矩之间的切换
12	ZERO_SPD	 零速钳位功能 	有效-使能零位固定功能 无效-禁止零位固定功能
13	INHIBIT	脉冲禁止	有效-禁止指令脉冲输入 无效-允许指令脉冲输入
14	P_OT	正向超程	当机械运动超过可移动范围限位开关动作,进入超程保护功能 有效-正向超程,禁止正向驱动 无效-正常范围,允许正向驱动
15	N_OT	负向超程	当机械运动超过可移动范围限位开关动作,进入超程保护功能 有效-负向超程,禁止正向驱动 无效-正常范围,允许正向驱动
16	P_CL	正向外部转矩限制	有效-外部转矩限制有效 无效-外部转矩限制无效
17	N_CL	负向外部转矩限制	有效-外部转矩限制有效 无效-外部转矩限制无效
18	P_JOG	正向点动	有效-按照给定指令输入 无效-运行指令停止输入
19	N_JOG	负向点动	有效 - 按照给定指令反向输入 无效-运行指令停止输入

			T
20	GEAR_SEL1	电子齿轮选择	GEAR_SEL1 无效,GEAR_SEL2 无效-电子齿轮比 1 GEAR_SEL1 有效,GEAR_SEL2 无效-电子齿轮比 2
21	GEAR_SEL2	电子齿轮选择	GEAR_SEL1 无效,GEAR_SEL2 有效-电子齿轮比 3 GEAR_SEL1 有效,GEAR_SEL2 有效-电子齿轮比 4
22	POS_DIR	位置指令反向	无效-不换向; 有效-换向
23	SPD_DIR	速度指令反向	无效-不换向 有效-换向
24	TOQ_DIR	 转矩指令反向	大效-环换向;有效-换向
	-	内部多段位置使能	无效-忽略内部多段指令;
25	PSEC_EN	信号	有效-启动内部多段
26	INTP_ULK	解除抢断定位锁定	无效-没有影响; 有效-当参数 P08.86 设置为 2 或 4 时,解 除位置指令抢断执行锁定状态
27	INTP_OFF	禁止执行抢断定位	无效-没有影响; 有效-当参数 P08.86 设置不为 0 时,启用 了抢断执行功能后,可用此 DI 随时禁止执 行抢断定位功能
28	HOME_IN	原点位置信号	作为原点位置信号或者减速点位置信号
29	STHOME	启动原点回归流程	开始执行原点回归
30	ESTOP	紧急停机	无效-没有影响 有效-进入紧急停机
31	STEP	位置步进使能	有效-执行指令步进量的指令; 无效-指令为零,为定位态
32	FORCE_ER	强制故障保护输入	无效-没有影响 有效-进入故障状态
34	INTP_TRIG	抢断定位执行触发 信号	无效-没有影响; 有效-当参数 P08.86 的值不为 0 时,触发 位置指令抢断执行流程,只能配置到 DI8, DI9
35	INPOSHALT	暂停生成内部位置 指令	无效-没有影响 有效-减速并暂停执行内部多段位置和抢断 定位
36	ANALOG	禁止模拟量输入	无效-没有影响 有效-禁止模拟量输入
37	ENC_SEN	SEN 使能绝对位置 输入	无效-没有影响 有效-OAOBOZ 发送绝对位置数据,此时不 能使能伺服
39	Touch1	探针1	无效:没有影响 有效:探针功能1执行信号
40	Touch2	探针 2	无效: 没有影响 有效: 探针功能 2 执行信号

数字量输出 DO 功能定义表

设定值	符号	名称	说明
1	S_RDY	伺服准备好	有效-伺服准备好 无效-伺服未准备好
2	S_ER	故障输出信号	检测出故障时状态有效
3	S_WARN	警告输出信号	警告输出信号有效(导通)
4	TGON	电机旋转输出信号	伺服电机的转速高于速度门限值时 有效-电机旋转信号有效 无效-电机旋转信号无效
5	V_ZERO	零速信号	伺服 电机 停止转 动时输出的信号。 有效-电机转速为零 无效-电机转速不为零
6	V_CMP	速度一致	速度控制时,伺服电机速度与速度指令 之差的绝对值小于 P04.44 值时有效
7	COIN	位置完成	位置控制时,位置偏差脉冲到达定位完成幅度 P04.47 内时有效
8	NEAR	定位接近信号	位置控制时,位置偏差脉冲到达定位接 近信号幅度 P04.50 设定值时有效
9	T_LT	转矩限制信号	转矩限制的确认信号 有效-电机转矩受限 无效-电机转矩不受限
10	V_LT	转速限制信号	转矩控制时速度受限的确认信号 有效-电机转速受限 无效-电机转速不受限
11	BKOFF	抱闸解除信号输出	抱闸解除信号输出: 有效-抱闸器松开,电机轴自由 无效-抱闸器恢复,电机轴锁住
12	T_ARR	转矩到达指定范围	检测到转矩指令值到达 P04.55 设定的值时输出信号有效,允许的变动范围由P04.56 决定
13	V_ARR	速度反馈到达指定范围	检测到速度反馈值到达 P04.45 设定值时 输出有效,允许有+/-10rpm 变动范围
15	INTP_DONE	抢断定位完成	位置指令抢断执行完成后输出
16	DB_OUT	动态制动输出	需要外接继电器或接触器及限流电阻
17	HOME	原点回归完成	
18	INTP_WORK	抢断定位正在执行	标志抢断定位正在执行
19	PCOM1	1号位置比较触发信号	1号位置到达相应范围时输出触发信号
20	PCOM2	2号位置比较触发信号	2号位置到达相应范围时输出触发信号
21	PCOM3	3 号位置比较触发信号	3号位置到达相应范围时输出触发信号
22	PCOM4	4 号位置比较触发信号	4号位置到达相应范围时输出触发信号

6.3 总线相关功能码

为方便使用,J3EB 总线驱动器在内部参数配置相关功能码,具体如下:

参数地址	名称	详细说明	默认值
1010_01h	6000 组写入参 数存储	6000 组参数要先写入需要写的参数,再在 1010-01 中写入 0x65766173 (或者 P20.06 设 9)之后存储参数,掉电保持; 1010-01 写入 0x74736572(或者 P20.06 设 10)则 取消存储参数,重启恢复默认	0
2100_02h (P00.01)	 控制模式 	0: 位置模式 1: 速度模式 2: 转矩模式 7: EtherCAT 模式	7
2100_09h~2100_0 Dh (P0.08~P0.12)	电子齿轮比	伺服内部电子齿轮比设置,具体请参阅第 5.10 章节介绍	
2100_1Dh (P00.28)	模数模式 低 32 位	(编码器单位:P) 绝对值系统下,如果设此值则开启模数模式,计数值只能从 0 计到此值减 1(齿轮比 为 1 时),需要 P07.11 设 1 开启掉电记忆	0
2100_1Fh (P00.30)	模数模式 高 32 位	功能,P20-06 写 8 清除多圈和位置反馈, 设置完成重上电。 P00.28 和 P00.30 设为 0,则为线性模式	0
2101_0Ch (P01.11)	速度前馈 通道选择	0: 无速度前馈1: 内部速度前馈2: 60B1h 速度前馈输入	0
2101_0Fh (P01.14)	转矩前馈 通道选择	0: 无转矩前馈 1: 内部转矩前馈 2: TFFD 用作转矩前馈输入 3: 60B2h 转矩前馈输入	0
2103_0Ah (P03.09)	正转内部转矩 限制	与 60E0h 正向最大转矩限制功能一致,并列关系。使用时取其两者中最小值	5000
2103_0bh (P03.10)	反转内部转矩 限制	与 60E1h 负向最大转矩限制功能一致,并列关系。使用时取其两者中最小值	5000
2103_1Ch (P03.27)	内部正速度限制	可作为轮廓转矩模式的最大正向速度限制,也可以用 6080h 最大电机转速代替	3000
2103_1Dh (P03.28)	内部负速度限制	可作为轮廓转矩模式的最大负向速度限制,也可以用 6080h 最大电机转速代替	3000
2107_09h (P07.08)	软限位功能选择	十六进制数,面板从右往左看各位: 第 4 位: 607Dh 软限位功能选择 0: 不开启软限位 1: 上电即开启软限位功能 2: 回原点完成后才开启软限位功能	0
2107_16h (P07.21)	保护功能 复位选择	十六进制数,从右往左看各位 第 3 位: 飞车保护选择 0: 可复位 1: 不可复位 第 4 位: 编码器欠压警告选择 0: 可复位 1: 不可复位	1000

2107_1Dh	回原完成信号保	设定(非 DI 启动回原方式)回原完成信号	2000
(P07.28)	持时间	保持时间(单位 ms)	
		第2位:电子齿轮比选择	
		0: 使用 P00.08 等伺服内部齿轮比	
2100 056		1: 使用 608Fh*6091h/6092h 电子齿轮比	
2109_0Eh (P09.13)	总线通信配置 1	第 3 位:速度指令单位选择 0:rpm 1:指令/秒	1115
(209.13)		0 · 1 pm	
		0: 0-1000rpm 加速时间(单位 ms)	
		1: 加速度(指令/s^2)	
		第 1 位: CSP 模式 BIT10 选择	
		0: 无效 1: 有效	
		第 2 位: 绝对式系统(P06.47=2)原点完成	
		标志存储设定	
2109_0Fh	总线通信配置 2	0: 不存储 1: 存储	0
(P09.14)		第 3 位:603Fh 显示选择	
		0:协议故障码 1: 高 8 位为 0XFF,低 8	
		位显示 J3E 内部故障码	
		第 4 位:探针功能选择(见 5.10 章节)	
		第1位:模数模式下位置反馈选择	
	总线通信配置 3	0:6064 计数范围从 0 到模态值减 1(齿	
		轮比为1时)	
2109_10h		1:6064 计数范围跟随 607A 一致,重上电	
(P09.15)		时只保存模态值	0
(1 03.13)		第 3 位:回原偏置(607C)写零值选择	
		0: 不保存 1: 保存	
		第 4 位:回原完成切 CSP 模式 bit15 选择	
2122 111		0: 不清除 1: 清除	
2109_11h	EtherCAT 断线	EtherCAT 断线检出次数,同步数据丢失次	12
(P09.16)	检测	数到达该值时,报出 Er.77 故障	
		第1位: CSP 模式最大速度选择	
		0: 电机最大速度限制,超过最大速度会报	
		出 ER.78 号指令异常故障 1: 最大速度按 6080h 值,超过不报故	
2109_12h		T. 版八述度按 000011 值,超过不报故	
(P09.17)	总线通信配置 4	第 2 位:设置同步偏移	1101
(1 03.11)		第2位: 図量内グ Mm/9 第3位: 停在原点再次进行回原选择:	
		3	
		第 4 位:限位对齐功能选择	
		0: 关闭 1: 开启(警告码 AL099)	
	5.1 5.5 3.5	0:由上位机写入 ESC EPROM 中的地址确	
2109_12h	EtherCAT 站号	定从站 ALIAS 地址;	2
(P09.18)	设置	其它值时,P09.18 设定从站 ALIAS 地址;	0
, ,		当采用自动增量寻址时 ALIAS 地址忽略	
2114 021	2100 但写》分	P20.02 设 42330(或 2114-03h 写入	
2114_03h (P20.02)	2100 组写入参 数保存	0xA55A),然后上位机写入 2100 组参	0
(PZU.UZ)	以本1子 	数可以保存到伺服 EPROM	

7

7报警及故障处理

- ◆ 7.1 报警及故障代码一览表
- ◆ 7.2 报警及故障处理

7.1 报警及故障代码一览表

表 7-1 列出了全部厂家自定义故障,表格中深色背景标准的单元格是总线专用故障。 表中 603Fh 一列表示厂家自定义故障码相应的 CiA 协议故障码,发生故障时,可从字典对 象 603Fh 读取。如果发生的故障不在表 7-1 中,请参考相应伺服驱动器的标准用户手册。

表 7-1,厂家自定义故障代码一览表

报警代码	名称	停止方式	能否复位	报警记录	603Fh
校言109 Err.001	石州 系统参数异常	立即停止	不可复位	不存记录	6320h
Err.002	产品型号选择故障	立即停止	不可复位	不存记录	6320h
Err.003	参数存储中故障	立即停止	不可复位	不存记录	7600h
Err.004	FPGA 故障	立即停止	不可复位	不存记录	6320h
Err.005	一 产品匹配故障	立即停止	不可复位	不存记录	6320h
Err.006	程序异常	立即停止	不可复位	不存记录	6320h
Err.007	编码器初始化失败	立即停止	不可复位	存储记录	7305h
Err.008	对地短路检测故障	立即停止	不可复位	存储记录	2330h
Err.009	过流故障 A	立即停止	不可复位	存储记录	2310h
Err.010	过流故障 B	立即停止	可复位	存储记录	2310h
Err.012	增量光电编码器 Z 断线或者	立即停止	不可复位	存储记录	7305h
LITIOIZ	绝对值编码器圈数异常		170交匝	口旧心水	130311
Err.013	编码器通信异常	可设定	不可复位	存储记录	7305h
Err.014	编码器数据异常	可设定	不可复位	存储记录	7305h
Err.015	编码器电池电压过低异常	立即停止	不可复位	存储记录	7305h
Err.016	速度偏差过大	可设定	可复位	存储记录	8400h
Err.017	转矩饱和超时	可设定	可复位	存储记录	8300h
Err.018	控制电欠压	可设定	可复位	存储记录	3220h
Err.019	飞车故障	可设定	可复位	存储记录	8400h
Err.020	过电压	立即停止	可复位	存储记录	3210h
Err.021	欠电压	减速停止	可复位	默 认 不存,可选	3220h
Err.022	电流采样故障	立即停止	可复位	存储记录	7200h
Err.023	AI 采样电压过大	立即停止	可复位	存储记录	7200h
Err.024	过速	立即停止	可复位	存储记录	8400h
Err.025	电角度辨识失败	立即停止	可复位	不存记录	FF00h
Err.026	惯量辨识失败故障	立即停止	可复位	不存记录	FF00h
Err.027	DI 端子参数设置故障	立即停止	可复位	不存记录	6320h
Err.028	DO 端子参数设置故障	立即停止	可复位	不存记录	6320h
Err.040	伺服 ON 指令无效故障	可设定	可复位	不存记录	FF00h
Err.042	分频脉冲输出过速	可设定	可复位	存储记录	FF00h
Err.043	位置偏差过大故障	可设定	可复位	存储记录	8611h
Err.044	主回路输入缺相	可设定	可复位	存储记录	3130h

报警代码	名称	停止方式	能否复位	报警记录	603Fh
Err.045	驱动器输出缺相	可设定	可复位	存储记录	3130h
Err.046	驱动器过载	可设定	可复位	存储记录	3230h
Err.047	电机过载	可设定	可复位	存储记录	3230h
Err.048	电子齿轮设定错误	可设定	可复位	不存记录	6320h
Err.049	散热器过热	可设定	可复位	存储记录	4210h
Err.050	脉冲输入异常	可设定	可复位	存储记录	8500h
Err.051	全闭环位置偏差过大	可设定	可复位	存储记录	8611h
Err.054	用户强制故障	减速停止	可复位	存储记录	FF00h
Err.055	绝对位置复位故障	可设定	可复位	存储记录	FF00h
Err.056	主电源断电	减速停止	可复位	默 认 不 存,可选	5100h
Err.058	STO 安全转矩切断	立即停止	可复位	默 认 不 存,可选	5100h
Err.060	写入定制版程序后第一次启动	立即停止	停止	不存记录	6320h
Err.061	自动寻址错误	停止	不可复位	存储记录	FF00h
Err.062	整流制动管故障	停止	不可复位	存储记录	FF00h
Err.063	整流风扇检测故障	减速停止	可复位	存储记录	FF00h
Err.065	CAN 总线关闭	可设定	可复位	存储记录	7500h
Err.066	异常的 NMT 命令	可设定	可复位	存储记录	7500h
Err.067	CAN 总线故障	减速停止	可复位	存储记录	7500h
Err.071	节点保护或者心跳超时	可设定	可复位	存储记录	7500h
Err.072	同步失效	可设定	可复位	存储记录	7500h
Err.073	CANopen 轨迹缓冲区下溢	可设定	可复位	存储记录	7500h
Err.074	CANopen 轨迹缓冲区上溢	可设定	可复位	存储记录	7500h
Err.075	从站初始化失败	停止	不可复位	存储记录	7500h
Err.076	同步失败	停止	可复位	存储记录	7500h
Err.077	EthErrCAT 通讯中断	减速停止	可复位	存储记录	7500h
Err.078	指令给定异常	停止	可复位	存储记录	7500h
Err.079	使能时无控制模式	停止	可复位	存储记录	7500h
AL.080	欠电压警告	不停止	可复位	不存记录	3220h
AL.081	驱动器过载警告	不停止	可复位	存储记录	3230h
AL.082	电机过载警告	不停止	可复位	存储记录	3230h
AL.083	需要重新接通电源的参数变更	不停止	可复位	不存记录	6320h
AL.084	伺服未准备好	不停止	可复位	不存记录	FF00h
AL.085	写 E2PROM 频繁操作警告	不停止	可复位	不存记录	7600h
AL.086	正向超程警告提示	不停止	可复位	不存记录	FF00h
AL.087	负向超程警告提示	不停止	可复位	不存记录	FF00h
AL.088	位置指令过速	不停止	可复位	不存记录	8500h
AL.090	绝对值编码器角度初始化警告	不停止	可复位	存储记录	FF00h

报警代码	名称	停止方式	能否复位	报警记录	603Fh
AL.093	能耗制动过载	不停止	可复位	存储记录	3210h
AL.094	外接再生泄放电阻过小	不停止	可复位	不存记录	3210h
AL.095	紧急停止	减速停止	可复位	不存记录	FF00h
AL.096	原点回归错误	减速停止	可复位	不存记录	FF00h
AL.097	编码器电池欠压	不停止	可复位	不存记录	7305h
AL.099	限位对齐警告	不停止	可复位	不存记录	FF00h

7.2 报警及故障处理

表 7-2 介绍了报警及故障原因、处理措施,表格中深色背景单元格是总线专用故障。

表 7-2, 厂家自定义故障的原因和处理措施一览表

表 (-2,) 家自定义故障的原因和处理措施一觉表					
报警代码和名称	原因	处理措施			
Err.001: 系统参数异常	1、控制电源电压瞬时下降; 2、升级驱动器软件之后,部分 参数的范围有改动,导致之前存 储的参数超出上下限	1、确保电源电压在规格范围内,恢复出厂参数(P20.06设置为1); 2、如果升级了软件,请先恢复出厂参数			
Err.002: 产品型号选择故障	1、编码器连接线损坏或连接松动; 2、无效的电机型号或驱动器型号	1、检查编码器接线是否正常,确保接线牢固; 2、更换成有效的电机型号或驱动器型号			
Err.003: 参数存储中故障	1、参数读写过于频繁; 2、参数存储设备故障; 3、控制电源不稳定; 4、驱动器故障	1 上位装置用通信修改参数并写 入 EEPROM 操作过于频繁。请 检查通信程序是否存在频繁修改 参数并写入 EEPROM 的指令; 2 检查控制电接线,同时确保控 制电源电压在规格范围内			
Err.004: FPGA 故障	软件版本异常	查看软件版本是否匹配			
Err.005: 产品匹配故障	1、编码器连接线损坏或连接松动; 2、使用不支持的外部接口如编码器等; 3、电机型号与驱动器型号功率不匹配; 4、不存在的产品型号编码	1、检查编码器接线是否良好; 2、更换不匹配的产品; 3、选择正确的编码器类型或更换其他类型的驱动器;例如设置的电机型号的功率等级大于驱动器的功率等级大于驱动器的功率等级比驱动器的功率等级差了两级以上会报出这个故障			
Err.006: 程序异常	1、系统参数异常; 2、驱动器内部故障	EEPROM 故障,恢复出厂参数 (P20.06 设置为 1),重上电			

报警代码和名称	原因	处理措施
Err.007: 编码器初始化失败	上电时检测到编码器信号异常	检查编码器接线,或更换编码器 线缆
Err.008: 对地短路检测故障	1、UVW 接线错误; 2、电机损坏; 3、驱动器故障	1、检测线缆 UVW 是否与地短路,如果是则更换线缆; 2、检测电机线电阻以及对地电阻是否正常,如异常更换电机
Err.009: 过流故障 A	1、指令输入与接通伺服同步或 指令输入过快; 2、外接制动电阻过小或短路; 3、电机电缆接触不良; 4、电机电缆接地; 5、电机 UVW 电缆短路; 6、电机烧坏; 7、软件检测出功率晶体管过电流	1、检查指令输入时序,伺服接通"rdy"后输入指令; 2、测量制动电阻阻值是否满足规格,按说明书要求重新选择合理制动电阻; 3、检查线缆连接器是否松脱,确保连接器紧固; 4、检查电机 UVW 线与电机接地线之间的绝缘电阻绝缘不良时更换电机; 5、检查电机电缆连接 UVW 是否短路,正确连接电机电缆;6、检查电机免线缆间电阻值是否相同,不同则更换电机;7、减小负载。提升驱动器、电机容量,延长加减速时间
Err.010: 过流故障 B	1、指令输入与接通伺服同步或 指令输入过快 2、外接制动电阻过小或短路 3、电机电缆接触不良 4、电机电缆接地 5、电机 UVW 电缆短路 6、电机烧坏; 7、软件检测出功率晶体管过电流	1、检查指令输入时序,伺服接通"rdy"后输入指令; 2、测量制动电阻阻值是否满足规格,按说明书要求重新选择合理制动电阻; 3、检查线缆连接器是否松脱,确保连接器紧固; 4、检查电机 UVW 线与电机接地线之间的绝缘电阻绝缘不良时更换电机; 5、检查电机电缆连接 UVW 是否短路,正确连接电机电缆;6、检查电机各线缆间电阻值是否相同,不同则更换电机; 7、减小负载。提升驱动器、电机容量,延长加减速时间
Err.012: 增量光电编码器 Z 断线或者绝对值编 码器圈数异常	增量式编码器: 1、Z信号接收异常,Z信号线接 线不良或编码器故障导致Z信号 丢失;	1、手动旋转电机轴,如果依然 报故障,则检查编码器接线,重 新接线或更换电缆,或更换编码

报警代码和名称	原因	处理措施
	绝对式编码器:	器,重新上电;
	2、绝对式编码器电池供电不	2、需要确定电池是否正常,若电
	足;	池电压不足,请更换电池;
	3、参数 P06.47=1(设置为绝对式	3、将 P20.06 =7 初始化圈数,
	系统),未进行编码器初始化操	重新上电;
	作;	4、将 P20.06 =7 初始化圈数,
	4、在驱动器断电期间,编码器	重新上电
	电机端接线有拔插	
F 012.	1、通信式编码器断线;	1、检查编码器接线,或者更换
Err.013:	2、编码器未接地;	编码器线缆;
编码器通信异常	3、通信校验异常	2、检查编码器是否接地良好
	1、串行编码器断线或接触不	
Err.014:	良;	★☆炒 式老再换炉刀皿炒炒
编码器数据异常	2、串行编码器存储数据读写异	检查接线,或者更换编码器线缆
	常	
Err.015:	编码器电池电压低于 P06.48 设	
编码器电池电压过	定的阀值,并且 P06.47 的十位	更换编码器电池
低异常	设置为 1	
		1、将 P06.45 的设定值提高;
		2、将内部位置指令的加减速时
Err.016:	速度指令和实际测得的速度的绝	间延长,或者调节增益提高系统
速度偏差过大	对差值超过 P06.45 设定的阀值	的响应;
		3、将速度偏差过大阈值功能置
		为无效,即 P06.45=0
Err.017:	转矩长时间处于饱和状态,持续	1、提高参数 P06.46 设定时长;
转矩饱和超时	时间超过 P06.46 设定的阀值	2、检查 UVW 是否断线
Err.018:	控制电输入接线不良,或输入电	1、检查输入电源及接线
控制电欠压	源故障	2、更换驱动器
		1、检查 UVW 以及编码器接线
Err.019:	由于接线等错误,导致控制回路	2、检查驱动器、电机,如有必
飞车故障	发散,导致电机飞车失速	要请更换,并联系厂家检测
		1、输入正确的电压范围;
		2、检查是否已连接外置电阻。
	1、电源电压超过允许范围,	测量外置电阻的阻值是否已经断
	AC280V;	开,确保接线正确,如果是电阻
Err.020:	2、制动电阻断线,制动电阻不	已烧毁,则建议更换功率更大的
过电压	匹配,导致无法吸收再生能量;	外置电阻(可联系厂家获取相关
	3、负载惯量超出允许范围;	建议);
	4、驱动器损坏	3、延长加减速时间,或者根据
		负载惯量重新选择合适的驱动器
		和电机

报警代码和名称	原因	处理措施
Err.021: 欠电压	1、电源电压下降; 2、发生瞬时停电; 3、欠压保护阈值(P06.36)设 置偏高; 4、驱动器损坏 (注:这个故障默认不存储记录,可通过 P07.19 设定是否存储)	1、提升电源电压容量,确保电源电压稳定; 2、确认电源电压正常的情况下,检查欠压保护阈值(P06.36)设置是否偏高
Err.022: 电流采样故障	驱动器内部电流采样故障	更换伺服驱动器
Err.023: AI 采样电压过大	1、AI 接线错误; 2、外部输入电压偏高	正确连接 AI 输入,将输入电压设定在±10V 以内
Err.024: 过速	1、速度指令超过了最高转速设定值; 2、UVW 相序错误; 3、速度响应严重超调; 4、驱动器故障	1、降低速度指令; 2、检查 UVW 相序是否正确; 3、调整速度环增益,减少超调; 4、更换驱动器
Err.025: 电角度辨识失败	1、负载或惯量太大; 2、编码器接线有误	1、减小负载或加大电流环增益; 2、更换编码器线缆
Err.026: 惯量辨识失败故障	1、负载或惯量太大,电机不能 按照规定的曲线运行; 2、辨识过程中出现其他故障导 致辨识终止	1、减小负载或加大电流环增益; 2、保证辨识过程正常
Err.027: DI 端子参数设置故 障	1、不同的物理 DI 端子重复分配了同一 DI 功能; 2、物理 DI 端子与通信控制的 DI 功能同时存在分配	1、P04.01~P04.09 中有同一功能配置到多个物理 DI 端子的的情况; 2、P04.01~P04.09 中分配的功能,与 P09.05~P09.08 中相应的二进制位同时启用,请参考P09.05~P09.08 的使用方法;重新分配 DI 功能
Err.028: DO 端子参数设置故 障	不同的 DO 重复分配了同一输出	P04.21~P04.29 中有同一功能 配置到多个 DO 的的情况,重新 分配 DO 功能
Err.040: 伺服 ON 指令无效 故障	执行了让电机通电的辅助功能 后,仍然从上位机输入了伺服 ON 命令	改变不当的操作方式
Err.042: 分频脉冲输出过速	超过了硬件允许的脉冲输出上限	更改分频输出设置功能码,使得 在伺服工作的整个速度 范围内,分频输出脉冲频率不会 超限

报警代码和名称	原因	处理措施
Err.043: 位置偏差过大故障	1、伺服电机的 UVW 接线; 2、伺服驱动器增益较低; 3、位置指令脉冲的频率较高; 4、位置指令加速过大; 5、位置偏差超出位置偏差过大 故障值(P00.19)设置的值过小; 6、伺服驱动器/电机故障	1、确认电机主电路电缆的接线,重新接线; 2、确认伺服驱动器增益是否过低,提高增益; 3、尝试降低指令频率后再运行降低位置指令频率、指令加速度或调整电子齿轮比; 4、降低指令加速度后再运行加入位置指令加减速时间参数等平滑功能; 5、确认位置偏差故障值(P00.19)是否合适,正确设定(P00.19)值; 6、后台查验运行图形,若有输入没反馈请更换伺服驱动器
Err.044: 主回路输入缺相	1、三相输入线缆接触不良; 2、缺相故障,即在主电源 ON 状态下,R\S\T 相的某一相电压过低的状态持续了1秒以上	1、检查三相电源输入的线缆是 否连接稳固(注意安全,不要带 电操作); 2、测量三相电源各相的电压, 确保输入电源三相平衡或者确保 输入电源电压符合规格
Err.045:	1、电机 UVW 接线不良;	1、检查 UVW 接线;
驱动器输出缺相	2、电机损坏,出现断路	2、更换伺服电机
Err.046: 驱动器过载	带载运行超过驱动器反时限曲线,原因如下: 1、电机 UVW 线或编码器线不良或者连接松动; 2、电机堵转或者被外力驱动,如机械卡死、碰撞,重力或别的外力拖动,或者机械制动器(抱闸)没有打开就运行; 3、多台驱动器配线时,误将别的同一台电机 UVW 线和编码器线连接到不同的驱动器上; 4、负载过大,驱动器或电机选型偏小; 5、可能缺相或相序接错; 6、驱动器或电机损坏	1、确认电机 UVW 线和编码器接线是否存在问题; 2、确认电机没有堵转或被外力驱动,确认机械制动器(抱闸)已经打开; 3、确认多台驱动器和电机没有出现交叉配线,即没有出现一台电机 UVW 线和编码器线连接到不同的驱动器上; 4、延长加减速时间,重新选择合适的驱动器或电机; 5、检查电机输出的 UVW 是否接错,是否对地短路; 6、更换驱动器或者电机
Err.047: 电机过载	带载运行超过驱动器反时限曲线,原因如下: 1、电机 UVW 线或编码器线不良或者连接松动;	1、确认电机 UVW 线和编码器接 线是否存在问题; 2、确认电机没有堵转或被外力 驱动,确认机械制动器(抱闸)

报警代码和名称	原因	处理措施
	2、电机堵转或者被外力驱动,如机械卡死、碰撞,重力或别的外力拖动,或者机械制动器(抱闸)没有打开就运行;3、多台驱动器配线时,误将别的同一台电机 UVW 线和编码器线连接到不同的驱动器上;4、负载过大,驱动器或电机选型偏小;5、可能缺相或相序接错;6、驱动器或电机损坏电子齿轮比超过规格范围[编码器	已经打开; 3、确认多台驱动器和电机没有出现交叉配线,即没有出现一台电机 UVW 线和编码器线连接到不同的驱动器上; 4、延长加减速时间,重新选择合适的驱动器或电机; 5、检查电机输出的 UVW 是否接错,是否对地短路; 6、更换驱动器或者电机
Err.048: 电子齿轮设定错误	分辨率/10000000, 编码器分辨率/2.5]	设定正确的齿轮比范围
Err.049: 散热器过热	1、风扇损坏; 2、环境温度过高; 3、过载后通过关闭电源对过载 故障复位,并持续多次; 4、伺服驱动器的安装方向、与 其它伺服驱动器的间隔不合理; 5、伺服驱动器故障; 6、驱动器或电机损坏	1、运行时风扇是否运转,更换风扇或驱动器; 2、测量环境温度 改善伺服驱动器的冷却条件,降低环境温度; 3、查看故障记录,是否有报过载故障,变更故障复位方法,过载后等待 30s 后再复位。驱动器、电机选用功率过小,提高驱动器、电机容量,加大加减速时间,降低负载; 4、确认伺服驱动器的设置状态,根据伺服驱动器的安装标准进行安装; 5、断电 5 分钟后重启是否依然报故障,重启后如果仍报故障请更换伺服驱动器
Err.050: 脉冲输入异常	1、输入频率大于脉冲输入最大 频率设定值; 2、输入脉冲受到干扰	1、更改最大允许频率,参数 P06.38; 2、后台软件查看指令是否异常,检查线路接地情况,确保线路可靠接地,信号采用双绞屏蔽线,输入线和动力线分开布线
Err.051: 全闭环位置偏差过 大	1、外部编码器异常; 2、相关设置过于保守	1、确认外部编码器线连接是否正确,更换外部编码器; 2、全闭环偏差过大,保护功能设置有误确认相关参数的设置重新设置相关参数
Err.054:	通过 DI 功能 32(FORCE_ERR)	正常的 DI 功能输入,配置了 DI

报警代码和名称	原因	处理措施
用户强制故障	强制进入故障状态	功能 32 且输入有效。断开输入即可解除故障
Err.055: 绝对位置复位故障	绝对位置编码器绝对位置复位故 障	联系厂家获取技术支持
Err.056: 主电源断电	停电或主电源线路异常。(注: 这个故障默认不存储记录,可通 过 P07.19 设定是否存储)	检查输入主电源是否有瞬间掉电, 提升电源电压容量
Err.058: STO 安全保护	启动了 STO 安全功能; STO 电路供电或接线异常	STO 端子恢复后,自动清除故障;检查 STO 供电接线是否正常如确认以上仍报故障,更换机器
Err.060: 写入定制版程序之 后第一次启动	在已经有标准程序的驱动器下载入定制版程序之后第一次启动	恢复出厂值,以便载入定制参数
Err.061: 自动寻址错误	当整流收到逆变返回的自动地址 超过设置范围 1~15 台时报错	检查末端网络短接片是否完好; 如果短接片完好,可 P14.19 右 起第二位设 1,手动设置地址
Err.062: 整流制动管故障	整流制动管 IGBT 故障	联系售后,返厂检修
Err.065: CAN 总线关闭	CAN 总线断开或者接收或发送异常	检查接线,重新连接。
Err.066: 异常的 NMT 命令	伺服 ON 时收到 NMT 停止命令 或复位命令	NMT 节点复位,不要在伺服 ON 时停止或复位 CAN 节点
Err.067: CAN 总线故障	CAN 总线断开或者接收或发送异常	检查接线,重新连接。
Err.071: 节点保护或者心跳 超时	节点保护和心跳监控到达设定的 间没有收到相应的应答	检查节点是否在线,NMT 节点复位
Err.072: 同步失效	CANopen IP 模式下与上位机同步失效	NMT 节点复位,或者 6040 发送 故障复位命令
Err.073: CANopen 轨迹缓冲 区下溢	CANopen IP 或 CSP 模式时,同步时钟丢失 2 次以上	检查通信线路是否有干扰,确认上位机正常运行。 NMT 节点复位,或者 6040 发送故障复位命令
Err.074: CANopen 轨迹缓冲 区上溢	CANopen IP 或 CSP 模式时,同步时钟过快,或者实际的时钟频率与配置值不一致	检查通信线路是否有干扰,确认 上位机正常运行,确认时钟频率 与配置值一致。NMT 节点复位, 或者 6040 发送故障复位命令
Err.075: 从站初始化失败	EthErrCAT 从站初始化失败	尝试重新刷入 XML 配置文件,然 后重上电
Err.076: 同步失败	EthErrCAT 同步失败	检查驱动器载波、同步周期等是 否合理
Err.077 :	通讯连续丢失最大次数超过设定	请检查网线是否插紧,或者更换

报警代码和名称	原因	处理措施
EthErrCAT 通讯中	值	使用带屏蔽的网线。可尝试
断		P09.16 值设大
Err.078: 指令异常	CSP 模式运行速度指令超过电机 最大速度	检查位置指令是否存在跳变,如存在指令跳变可适当调整同步偏移 P09.17 右起第二位。如果指令正常,请适当减小加减速。可通过 P09.17 第一位设 0 屏蔽此故障,但可能报偏差过大
Err.079: 使能时无 控制模式	伺服使能,6060h 为不支持的控制模式	重新设置 6060h 有效控制模式
AL.080: 欠电压警告	母线电压较低时输出的警告状态	1、检查输入主电源是否正常; 2、调低欠压检测点参数 P06.36
AL.081: 驱动器过载警告	带载运行超过驱动器反时限曲线,原因如下: 1、电机 UVW 线或编码器线不良或者连接松动; 2、电机堵转或者被外力驱动,如机械卡死、碰撞,重力或别的外力拖动,或者机械制动器(抱闸)没有打开就运行; 3、多台驱动器配线时,误将别的同一台电机 UVW 线和编码器线连接到不同的驱动器上; 4、负载过大,驱动器或电机选型偏小; 5、可能缺相或相序接错; 6、驱动器或电机损坏	1、确认电机 UVW 线和编码器接线是否存在问题; 2、确认电机没有堵转或被外力驱动,确认机械制动器(抱闸)已经打开; 3、确认多台驱动器和电机没有出现交叉配线,即没有出现一台电机 UVW 线和编码器线连接到不同的驱动器上; 4、延长加减速时间,重新选择合适的驱动器或电机; 5、检查电机输出的 UVW 是否接错,是否对地短路; 6、更换驱动器或者电机
AL.082: 电机过载警告	带载运行超过驱动器反时限曲线,原因如下: 1、电机 UVW 线或编码器线不良或者连接松动; 2、电机堵转或者被外力驱动,如机械卡死、碰撞,重力或别的外力拖动,或者机械制动器(抱闸)没有打开就运行; 3、多台驱动器配线时,误将别的同一台电机 UVW 线和编码器线连接到不同的驱动器上; 4、负载过大,驱动器或电机选型偏小; 5、可能缺相或相序接错; 6、驱动器或电机损坏	1、确认电机 UVW 线和编码器接线是否存在问题; 2、确认电机没有堵转或被外力驱动,确认机械制动器(抱闸)已经打开; 3、确认多台驱动器和电机没有出现交叉配线,即没有出现一台电机 UVW 线和编码器线连接到不同的驱动器上; 4、延长加减速时间,重新选择合适的驱动器或电机; 5、检查电机输出的 UVW 是否接错,是否对地短路; 6、更换驱动器或者电机

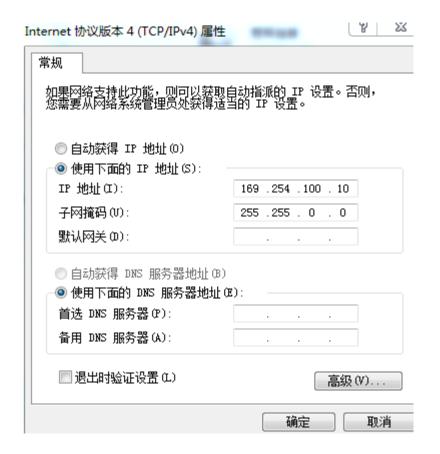
报警代码和名称	原因	处理措施
AL.083: 需要重新接通电源 的参数变更	变更了需要重新接通电源方可生 效的参数	重新上电
AL.084: 伺服未准备好	伺服未准备好时伺服 ON	检测到伺服 READY 时 再给使能
AL.085: 写 E2PROM 频繁操 作警告	程序非正常频繁操作 E2PROM	减少 EEPROM 写入操作频率,可以改用不存储 EEPROM 的通信写指令
AL.086: 正向超程警告提示	1、Pot 和 Not 同时有效,一般在工作台上不会同时出现的; 2、伺服轴在某方向上出现超程状态,可自动解除	正向限位开关被触发,检查运行模式,给负向指令离开正向限位,会自动清除警告(安全防范,超程时禁止人工转动电机)
AL.087: 负向超程警告提示	1、Pot 和 Not 同时有效,一般在工作台上不会同时出现的; 2、伺服轴在某方向上出现超程状态,可自动解除	负向限位开关被触发,检查运行模式,给正向指令离开负向限位,会自动清除警告(安全防范,超程时禁止人工转动电机)
AL.088: 位置指令过速	1、电子齿轮比设置过大; 2、脉冲频率过高	1、减少设定的电子齿轮比; 2、减少输入脉冲频率
AL.090: 绝对值编码器角度 初始化警告	编码器角度重新初始化时偏离过 大(大于 7.2 度电角度)警告	更换电机
AL.093: 能耗制动过载	能耗制动功率过载 1、制动电阻接线错误或接触不良; 2、使用内置电阻的情况有可能出现默认短接线脱落情况; 3、制动电阻容量不足; 4、制动电阻阻值过大导致长时间制动; 5、输入电压超过规定; 6、制动电阻阻值、容量、或发热时间常数设置错误; 7、伺服驱动器故障	1、检查制动电阻接线是否正常; 2、检查内置电阻接线是否正常; 3、增大制动电阻容量; 4、减少制动电阻阻值; 5、减少输入的电压值; 6、按规格设定合适的参数; 7、更换伺服驱动器
AL.094: 外接再生泄放电阻 过小	1、外接再生泄放电阻小于驱动器要求的最小值; 2、参数设置错误	1、按规格配置外接再生泄放电阻的功率; 2、查看参数 P00.21~P00.24 参数是否正确
AL.095: 紧急停止	触发了紧急停止	正常的 DI 功能输入,配置了 DI 功能 30 且输入有效。断开输入即可解除警告
AL.096: 原点回归错误	1、搜索原点的时间超过了 P08_95的设定值;	1、加大 P08.95 设定值; 2、回原点搜索速度过快导致,

报警代码和名称	原因	处理措施
	2、P08.90 参数设置为 3、4 或	减小回原点搜索的速度 P08.92,
	5,且碰到限位;	P08.93
	3、不以限位为原点时,两次碰	
	到限位	
AL.097:	编码器电池电压低于 P06.48 设	 检查更换编码器电池
编码器电池欠压	定的阀值	位重更换编码器电池
	CSP 模式运转碰限位,如果刚好	
	处于限位开关,则报超程警告;	 反向发指令直到位置指令和反馈
	如果已超出限位开关,且位置指	佐一致,会自动清除此警告
AL.099:	令和反馈不一致,则报 AL.099	值 致,云百切得称此言日 (安全防范,禁止人工转动电机)
限位对齐	报警时,继续正向发指令电机不	(女主)
	跑 ,需要反向发指令直到位置指	此功能
	令和反馈一致(607A=6064)电	ルレーグノ Hビ
	机才能跑,自动清除警告	

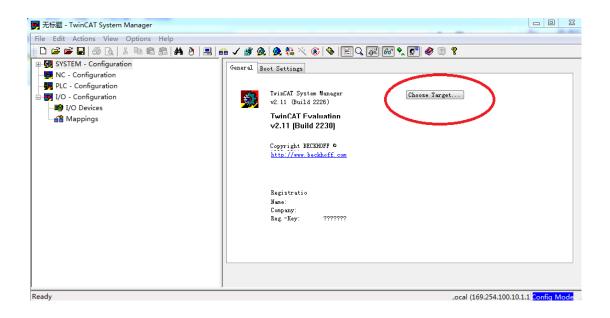
8

8应用举例

- ◆ 8.1 J3EN 与倍福 PLC 连接 CANopen
- ◆ 8.2 J3EN 与施耐德 PLC 连接 CANopen
- ◆ 8.3 J3EN 与汇川 PLC 连接 CANopen
- ◆ 8.4 J3EB 与倍福 PLC 连接 EtherCAT
- ◆ 8.5 J3EB 与欧姆龙 PLC 连接 EtherCAT
- ◆ 8.6 J3EB 与汇川 PLC 连接 EtherCAT
- ◆ 8.7 J3EB 与禾川 HCQ1 连接 EtherCAT

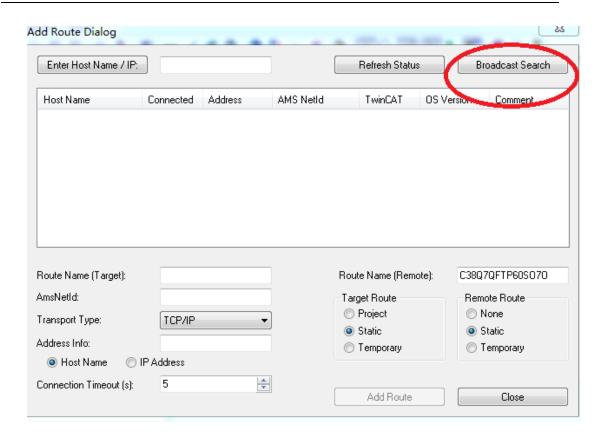

8.1 J3EN 与倍福 PLC 连接 CANopen

本案例以倍福 PLC 系统(CX5020 主机+EL6751 CAN 模块,Twin cat2.11)连接一台 J3E 带 CANopen 功能伺服驱动器,走轮廓位置模式为例子,步骤如下:

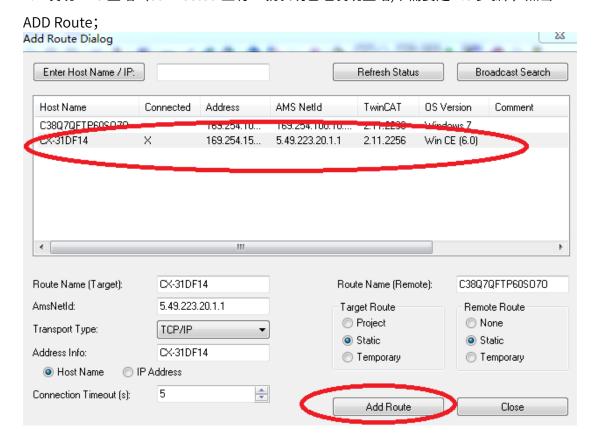

第一步:连接 PLC,建立工程:

1. 将电脑 IP 地址设置成 PLC 的同一网段:

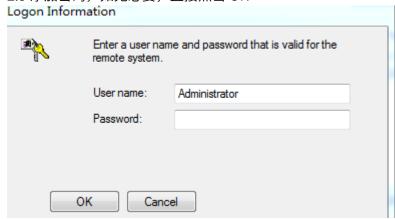
电脑-本地连接 → 属性 → internet 协议版本 4(TCP/Ipv4)属性 → 使用下面的 IP 地址,如下图(默认为 169.254.X.X):

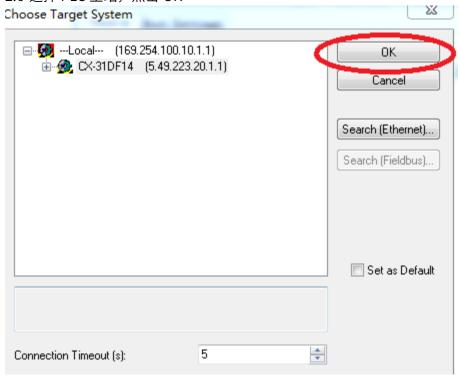


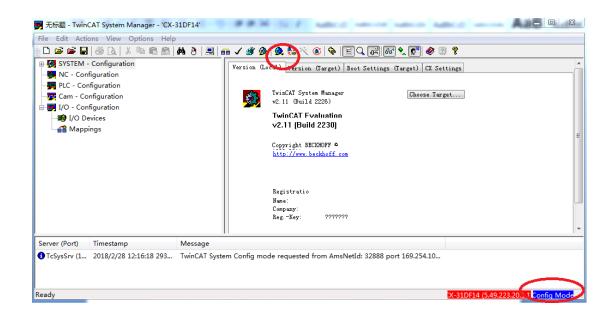
- 2. 打开 TwinCAT SystemManager(右键系统托盘图标),新建(file →New),Choose target,搜索 CX。Search(Ethernet)→ broadcast search,如图:
 - 2.1 新建工程后选择: Choose target



2.2 点击 search(Ethernet) Choose Target System OK CX-31DF14 (5.49.223.20.1.1) Cancel Search (Ethernet)... Set as Default Connection Timeout (s): 5


2.3 选择 Broadcast


2.4 发现 PLC 主站(connected 上有 X 就表明已经发现主站,不需要走 2.5 步骤),点击


2.5 添加密码,如无必要,直接点击 OK

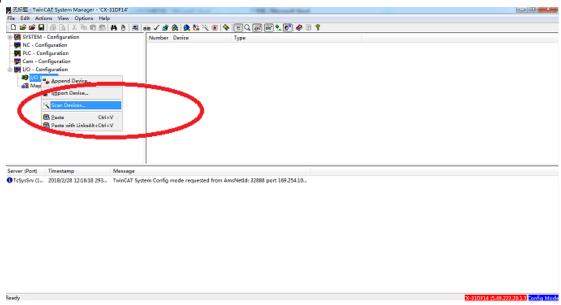
2.6 选择 PLC 主站,点击 OK

3.连接成功后,切换到 config 模式。

第二步:设置伺服参数

利用禾川伺服驱动器上位机软件 Servo Studio,设置参数如表 7-1 所示:

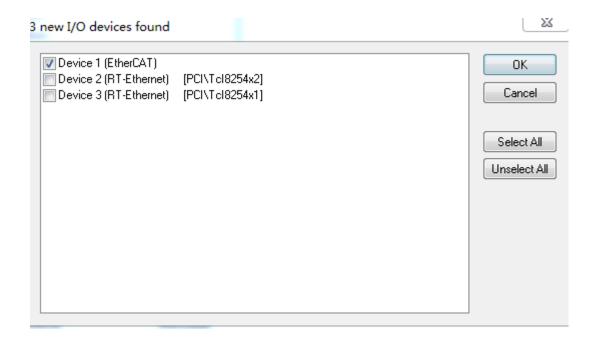
表 7-1, 与 CX5020 配合使用时禾川伺服驱动器参数配置


参数地址	设定值	说明
P00.01	7	CANopen 模式
P09.00	1	从站地址(默认为 1)
P09.13	5	波特率(默认为 500K)
P10.01	255	RPDO1 配置参数,异步传输, 如要禁止使用,改为 0x80FF
P10.03	255	RPDO2 配置参数,如要禁止使用,改为 0x80FF
P10.08	3	RPDO1 有效映射参数个数
P10.09	60600008h (1616904200)	控制模式
P10.11	60400010h (1614807056)	控制字
P10.13	607A0020h (1618608160)	轮廓位置给定
P10.25	1	RPDO2 有效映射参数个数
P10.26	60810020h (1619066912)	轮廓位置环的速度给定
P11.31	255	TPDO1 配置参数,异步传输,如 要禁止使用,改为 0x80FF
P11.32	10	TPDO1 禁止时间 1ms
P11.33	1	TPDO1 事件定时器 1ms

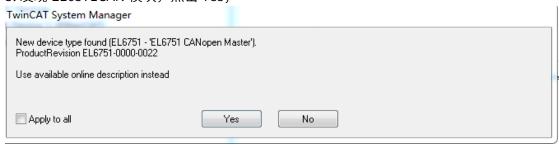
P12.00	1	TPDO1 有效映射参数个数
P12.01	60410010h (1614872592)	状态字

(注意,每组 PDO 最多设置 8 字节)

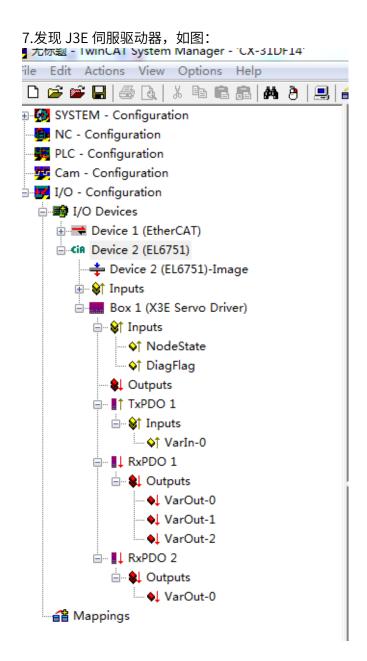
第三步: PLC 组态 J3E 伺服驱动器(PLC 与伺服驱动器之间要并联连接 120 欧姆电阻)


1. 倍福 PLC config 模式下,右键 I/O devices → CAN devices,PLC 自动搜索相连接模块;

2.点击确定

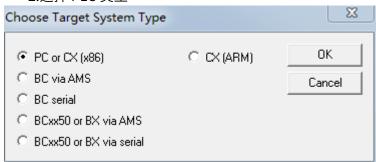

3.点击 OK;

4.搜索模块,点击是;

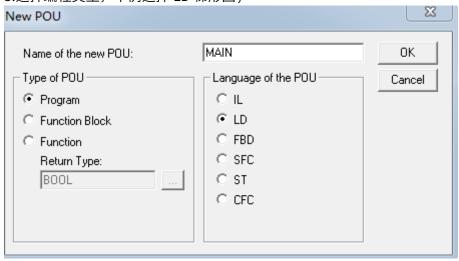


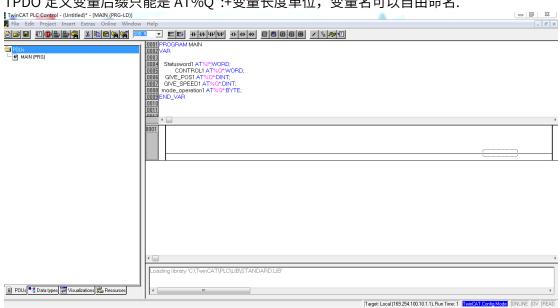
5. 发现 EL6571CAN 模块,点击 Yes;

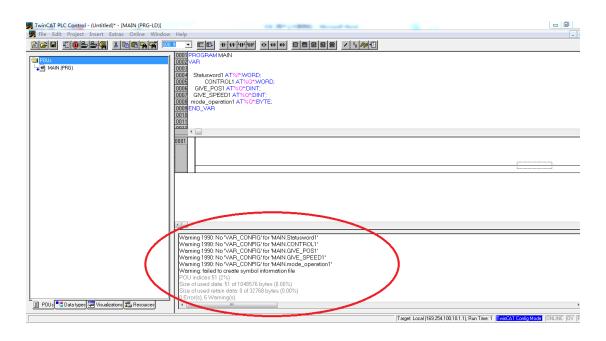
6.搜索完成,点击否;



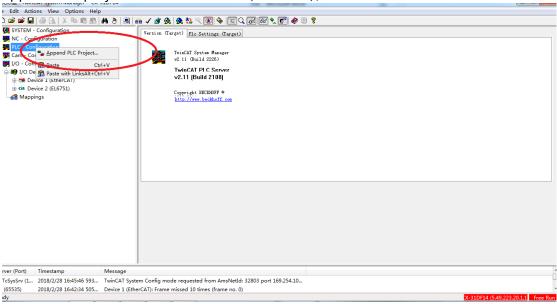
第四步:建立 PLC 编程程序,

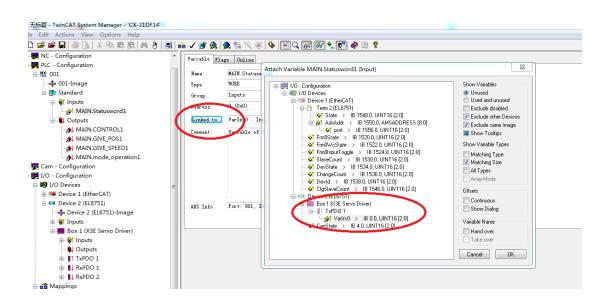

1. 打开 TwinCAT PLC 软件,新建工程;


2.选择 PLC 类型


3.选择编程类型,本例选择 LD 梯形图;

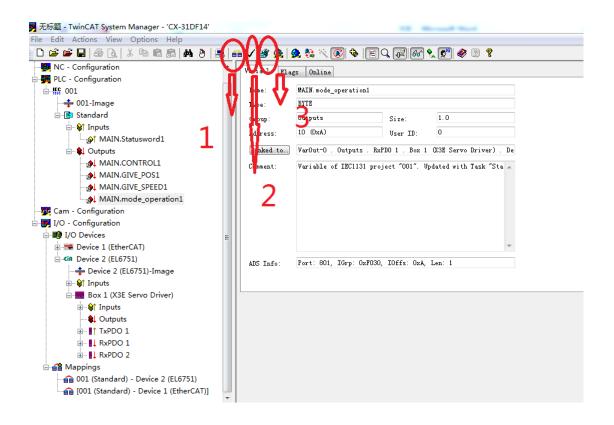
4. 进入编程页面,建立定义变量:如图,RPDO参数后缀只能为AT%I*:+变量长度单位,TPDO定义变量后缀只能是AT%Q*:+变量长度单位,变量名可以自由命名.

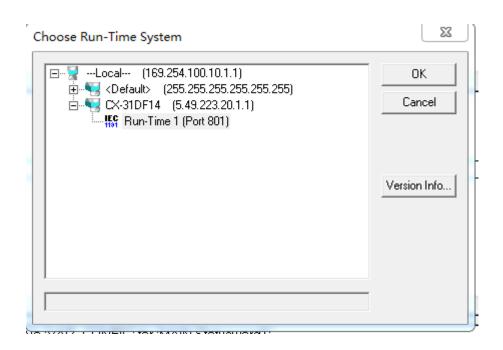

5.完成后先保存(save),之后编译(Project → reBuild all),生成 tpy 文件。


第五步:建立 J3E 参数与 PLC 定义变量的链接;

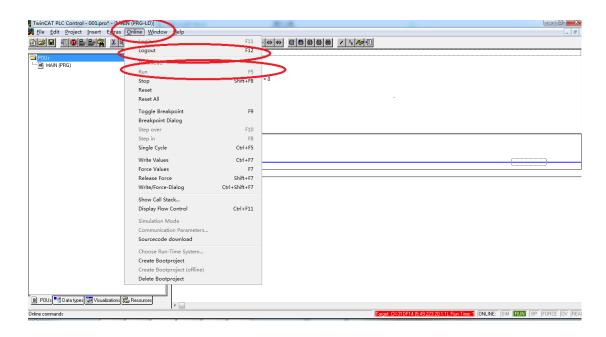
1. winCat SystemManager 中添加 PLC 程序的 tpy 文件(右键 PLC configuration →

append PLC project…), 做变量的链接(linked to);


2.选定 inputs-main. Statusword1-linked to,在弹出框中选择 Box1(J3E Servo Driver)中 TxPDO1_VarIn-0;


3.同理,也为其它 3 个 outputs 变量与 J3E 伺服 RxPDO3 个参数建立相应的链接;

第六步: 运行程序


1.激活 TwinCat SystemManager 配置,分为 3 个步骤,如图,最后进入 Run 模式。

2. 在 TwinCat PLC 中选择下载路径 online->choose runtime-system。

3. 在 TwinCat PLC 中 on-line -Login, 并且 Run。

- 3. 如果要在 CX 断电后依然能够运行所编写的 PLC 程序,点击 Online→ create bootproject。
- 4. 如果为了将来能够将程序上载,Online → sourcecode download

8.2 J3EN 与施耐德 PLC 连接 CANopen

施耐德 LMC058LF42 (Somachine V4.3)和禾川 J3E 带 CANopen 功能伺服驱动器配合使用

配置准备:

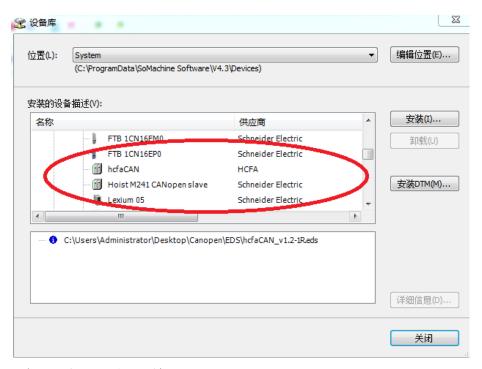
- 1. 施耐德 LMC058LF42 与禾川 J3E 伺服驱动器之间并联连接 120 欧姆电阻;
- 2. 禾川 J3EN 带 CANopen 功能伺服驱动器参数配置

参数地址	设定值	说明
P00.01	7	CANopen 控制模式
P09.00	1	从站地址(默认为 1)
P09.13	5	波特率(默认为 500K)

以下为准备配置步骤:

第一步:下载安装软件 Somachine V4.3,具体版本以施耐德官网为准

第二步: 施耐德 LMC058LF42 与 J3E 伺服驱动器安装连接


第三步:组态 CANopen

1. 新建工程,添加禾川伺服驱动器 EDS 设备文件: 工具 \rightarrow 设备库 \rightarrow 安装 \rightarrow 选择禾川 EDS 文件 \rightarrow 打开

(注意:加载成功后可在设备库→现场总线 →远程设备看到 hcfaCAN 的设备文件) 🎉 设备库 👚 👚 编辑位置(E)... 位置(L): System (C:\ProgramData\SoMachine Software\V4.3\Devices) 安装的设备描述(V): 安装(I)... 名称 供应商 版本 💵 📶 专用设备 卸载(山 SoftMotion员区支力 ■ 📶 可编程设备 安装DTM(M)... ▲ 🔐 现场总线 详细信息(D)... 关闭 文件 编辑 视图] 《 Administrator ▶ 桌面 ▶ Canopen ▶ EDS ◆ | 在线 组织 ▼ 新建文件夹 ₩ • □ 0 YE_Applications ^ 修改日期 类型 📗 用户 ■ hcfaCAN_v1.2-1R
■ hcfaCAN_v1-3R
■ hcfaCAN_v1-3R-Bkford - 副本
■ hcfaCAN_v1-3R-Bkford
■ hcfaCAN_v1-3R-Bkford
」 hcfaCAN_v1-3R-Bkford
」 IS620P-CANopen V2.0(1) 2018/2/28 9:42 EDS 文件 信息 Administrator

保存的游戏

联系人 2018/2/28 9:42 EDS 文件 2017/11/22 14:01 EDS 文件 2017/11/23 9:26 EDS 文件 2017/11/22 16:13 EDS 文件 2017/11/23 10:39 EDS 文件 2017/11/1 17:44 EDS 文件 ▼ 編輯位置(E)... ₩ 链接 ₩ 按案 1 我的文档 0% L & TMS B TMS_M B & Em 安装(I)... 文件名(N): EDS和DCF文件(*.eds, *.dcf) ▼ DDXML 文件 (*.xml) Sethenet
Solved
CANO
CAN1
SolfMotion General Drive Pool EDSRIDCISCHE teeds。 Zeld Ether CAT XML设备描述整面文件 (*xml) PROFIBUS DO YS.D配置文件 (*gs?) PROFIBUS DO YS.D配置文件 (*gs?) PROFIBUS TIME (*xml) SERCOS III I/O 设备返述 (*xml) SERCOS III I/O 设备返述 (*xml) SERCOS III (*xml) 受量施文化件(*xdevdesc.xml) 已安装的设备描述(*xml) 美间 节点名称: ▼ LMC058LF42 @0080F44023F8 连接模式: 节点名称 □ 没备材 ☆ 应用程序材 M 工具材 ■ 消息・总计・0个指误,0条警告,0条消息 ▼ 安全在线模式

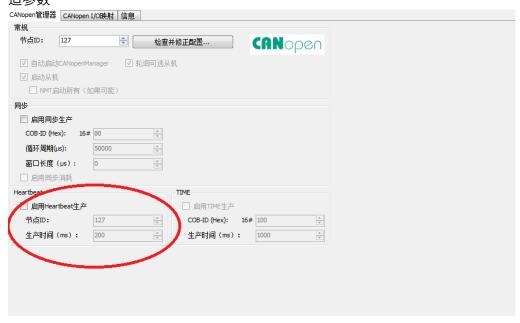
2. 添加禾川伺服驱动器从站:

2.1 设备树 → CANO → 右键"添加设备" → 选择 CANopen performance ⋒ 添加设备 名称: CANopen_Performance 行为: ◎ 添加设备(A)
⑥ 插入设备(I)
⑥ 拔设备(P)
⑥ 更新设备(U) 设备: Schneider Electric 供应商 占称 供应商 版本 CANopen Performance Schneider Electric 3.0.1.24 ■ 显示全部版本(只对专家)(D) 🔲 显示过期版本 信息: 图 名称: CANopen Performance 供应商: Schneider Electric 组: 版本: 3.0.1.24 模块序号: 1806 描述: CANopen 管理器性能, FDT 支持, 63 个从站, 同步管理 将被选设备作为最末的子设备添加 CAN₀ 0 (当此窗口打开时,可在导航器中选择另一个目标节点)

添加设备

关闭

2.2 设备树 → CANO → CANopen _performance → 右键 "添加设备" → 选择 "供应商 HCFA" 添加 CANopen 从站



3. 设置通讯波特率:设备树 → CANO → 左键双击 → 弹出页面选择需要的通讯波特率及一些其它需求

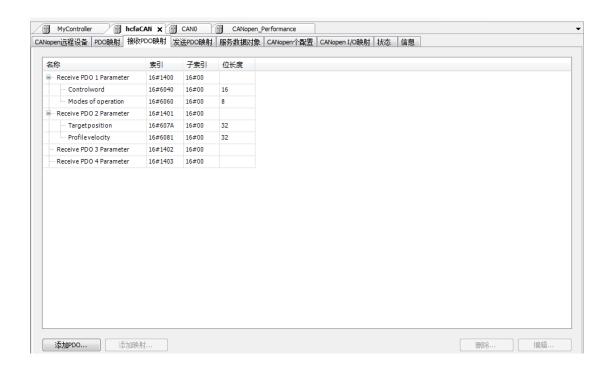
4. 设置心跳和节点保护

(注意,心跳和节点保护功能最多只能选一个,此功能会大量占用网络资源,参数设置不 合适时会造成报警,可不用时建议关闭此功能) 4.1 主站设置: 设备树 → CANO → \pm 大键双击 CANopen_performance → 弹出页面选择合适参数

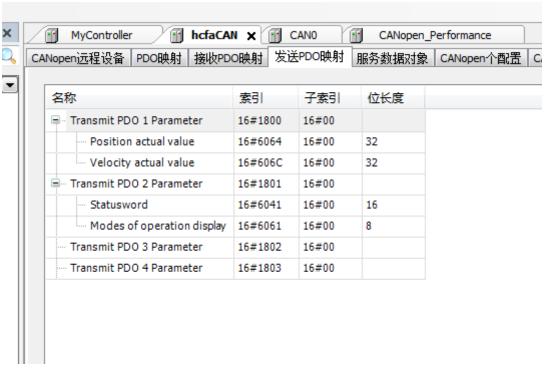
4.2 从站设置: 设备树 → CANO → CANopen _performance → 左键双击 hcfaCAN 弹出页 面选择合适参数

- (注意:关闭从站心跳除了不要勾选"启用 heartbeat 生产"外,还要把"Hearbeat 消耗(已激活)"里面取消)
- 5. 设置传输模式和组态 RPDO/TPDO 参数
- 5.1 当为异步传输模式时
- 1.主站设置: 设备树 → CANO →左键双击 CANopen _performance → 弹出页面中不要勾选 "启用同步生产"

- 2.从站组态 RPDO/TPDO 参数
- 2.1.设备树 →CAN0 → CANopen _performance →左键双击 hcfaCAN→ 弹出页面选择 "启用专家使能设置"



2.2.设置"接受 PDO 映射参数":"接受 PDO 映射参数"页面→删除所有默认参数添加需要的映射;

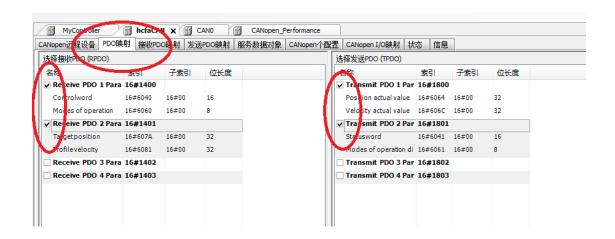

轮廓位置环要设置基本参数包括:

索引	名称	说明
60400010	控制字	使能,清除报警等
60600008 控制模式 轮廓位置模式=1		轮廓位置模式=1

607A0020	给定目标位置	
60810020	轮廓位置环速度给定	

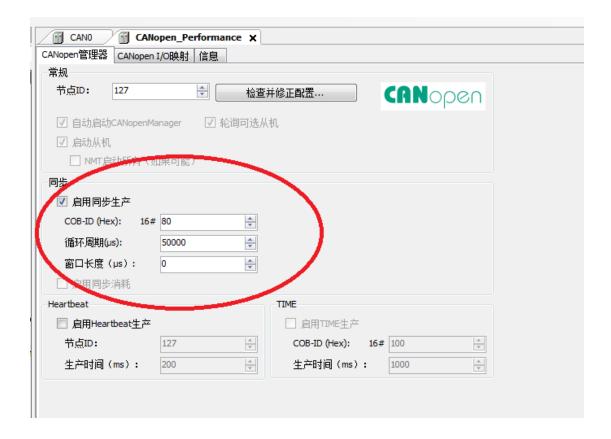
2.3.设置"发送 PDO 映射参数":"发送 PDO 映射参数"页面→删除所有默认参数添加需要的映射(下面截图设置了 2 组"发送 PDO 映射参数")

2.4.设置异步传输模式: "发送 PDO 映射参数"页面 →左键双击第一组 "发送 PDO 映射参

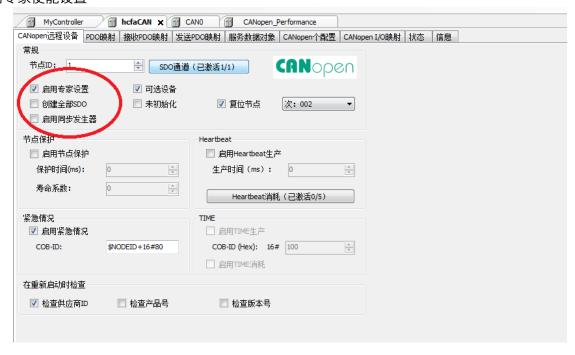

数"→在弹出的 PDO 属性框内选择"异步的-设备配置文件指定(Type 255)"→ 设置合适的禁止时间和事件时间→同理设置第二组"发送 PDO 映射参数"的 PDO 属性;

抑制时间:选择异步-设备配置文件指定 (Type 255) 后可以设置,为 0 时表示此功能无效。不为 0 时为帧发送的最小间隔。

事件时间:选择异步-设备配置文件指定 (Type 255) 后可以设置,为 0 时此功能无效。不为 0 时,表示定时发送的周期。(此发送情况也要受抑制时间的限制)

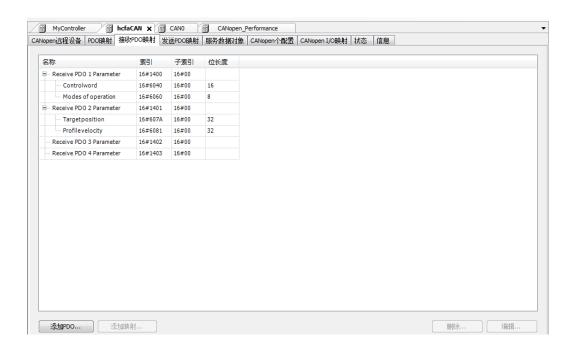


2.5.生效 PDO 映射: PDO 映射页面 → 勾选组态的 PDO 映射,如下图

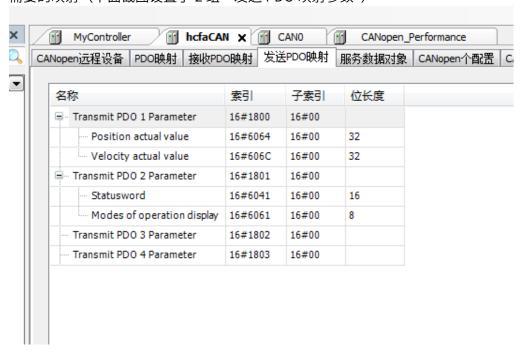


5.2 当为同步传输模式时

1.主站设置: 设备树→ CANO → 左键双击 CANopen _performance → 弹出页面中勾选 "启用同步生产" →设置合适的参数;



- 2.组态 RPDO/TPDO 参数
- 2.1 设备树→ CANO → CANopen _performance →左键双击 hcfaCAN-弹出页面选择 "启用专家使能设置"



2.2 设置"接受 PDO 映射参数":"接受 PDO 映射参数"页面→删除所有默认参数添加需要的映射;轮廓位置环要设置基本参数包括:

索引	名称	说明		
60400010	控制字	使能,清除报警等		
60600008	控制模式	轮廓位置模式=1		
607A0020	给定目标位置			
60810020	轮廓位置环速度给定			

2.3 设置"发送 PDO 映射参数":"发送 PDO 映射参数"页面 \rightarrow 删除所有默认参数添加需要的映射(下面截图设置了 2 组"发送 PDO 映射参数")

2.4 设置同步传输模式: "发送 PDO 映射参数"页面 \rightarrow 左键双击第一组 "发送 PDO 映射参数" \rightarrow 在弹出的 PDO 属性框内选择 "循环-同步(Type 1-240)" \rightarrow 设置合适的同步数。 同理设置第二组 "发送 PDO 映射参数"的 PDO 属性;

同步数:选择循环-同步 (Type 1-240) 后有效,设置同步数(单位 100us)。

2.5 生效 PDO 映射: PDO 映射页面→ 勾选组态的 PDO 映射,如下图

第四步:编写 PLC 程序等,编译,登录、运行 PLC 工程。

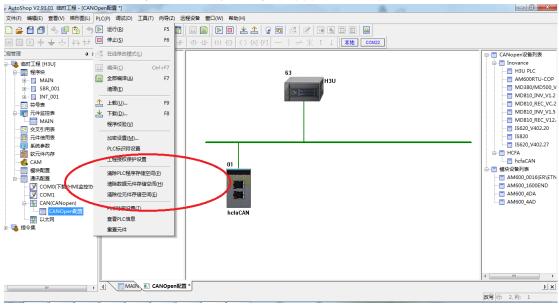
8.3 J3EN 与汇川 PLC 连接 CANopen

以下介绍汇川 H3U-3232MR(Autoshop V2.93)搭配禾川 J3E 带 CANopen 功能伺服使用步骤

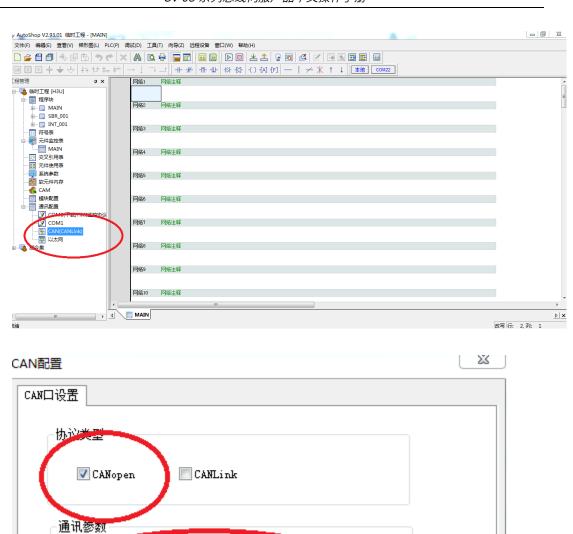
前置:设置 J3EN 伺服驱动器参数:

设置参数如下:

参数地址	设定值	说明	
P0.01	7	CANopen 控制模式	
P9.00	1	从站地址(默认为 1)	
P9.13	5	波特率(默认为 500K)	


第一步:下载安装 Autoshop 软件,具体版本以汇川官网为准

第二步: H3U 与 J3EN 伺服驱动器安装连接


(注意打下 H3U 终端电阻,CAN 端口要外接 DC24+和 DC24V-,可以在 H3U 上引出)

第三步:组态 CANopen

0. 为了尽量减少其它问题,建议 PLC 使用前,清除内部所有数据

1. 新建工程,双击 CAN(CANlink),选择 CANopen 模式:

(注意:有时候站号开始默认值不是 63,是 1,要"后台设置改"为 63,实际值可以点击"在线读取"取得)

确定

取消

在线写入 | 在线读取

2. 右键点击 CAN (CANopen),添加"添加 CAN 配置"

☑ 拨码设置

☑ 拨码设置

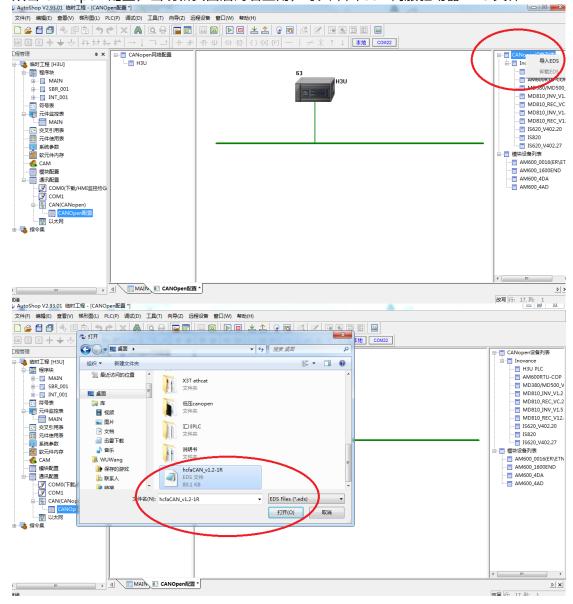
Ψ Kbps

1 年 站号 年 63

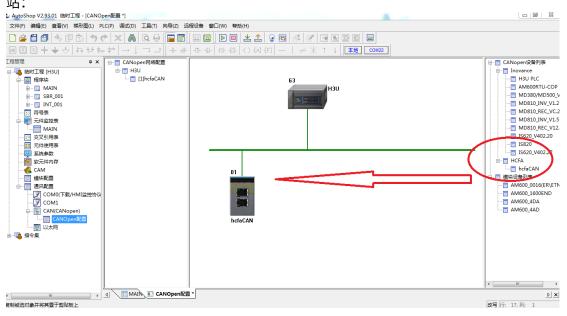
■ 后台设置

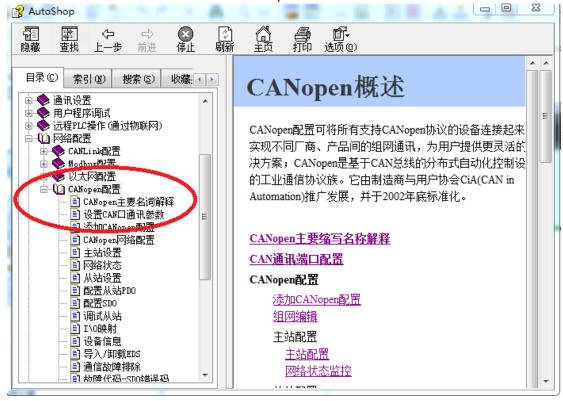

站号: 63

□ 后台设置

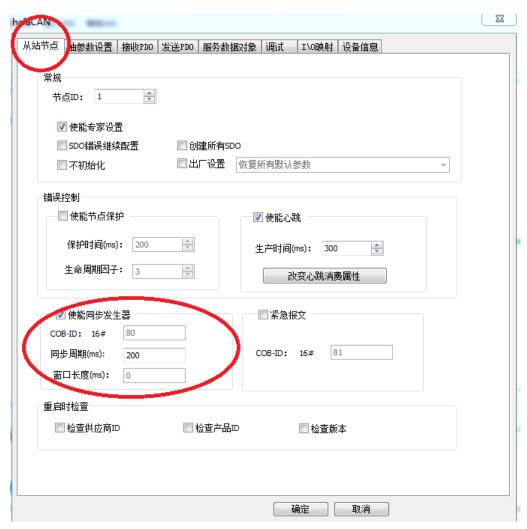

波特率: 500

主站配置请右键添加


波特率

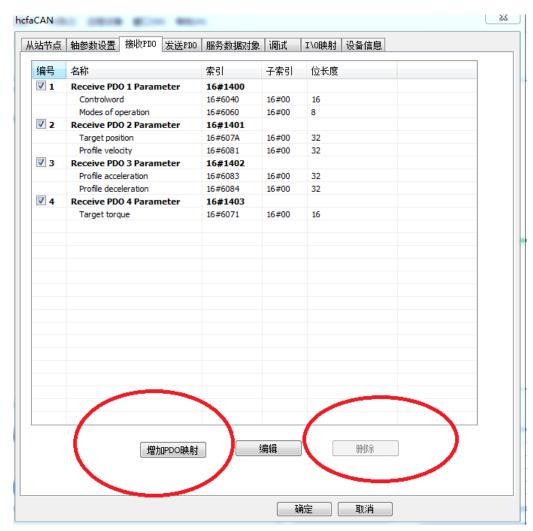

3. 双击 CANopen 配置,出现新页面后的右上角,导入禾川 J3E 伺服驱动器 EDS 文件:

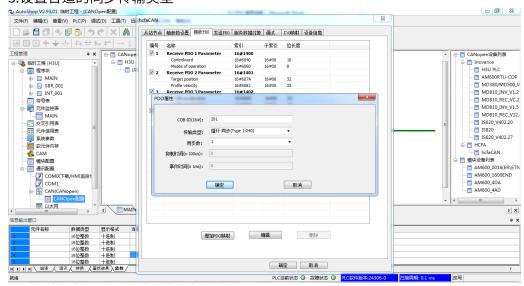
4. 选择 hcfaCAN 从站,按住鼠标左键拖动鼠标到主站下面的空白处,添加 CANopen 从



5. 设置 J3E 驱动器从站信息,可参考 Autoshop 帮助说明(按 F1 或者帮助-帮助主题)

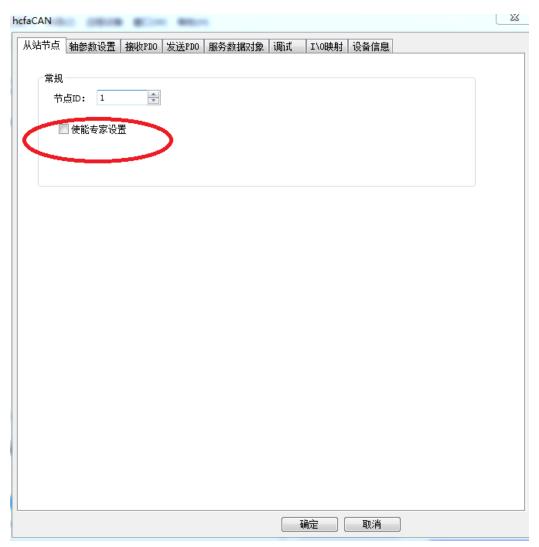
当传输模式为同步模式时:


1.开启同步功能:双击从站,"从站节点"页面点击"使能专家设置",勾选"使能同步发射器",可以设置合适的同步周期时间;


2.组态合适的"接受 PDO"和"发送 PDO"参数,可点击"增加 PDO 映射"和 "删除"。(注意不要重复设置一样的"接受 PDO"参数,比如多个控制字,否则 使用出现异常)

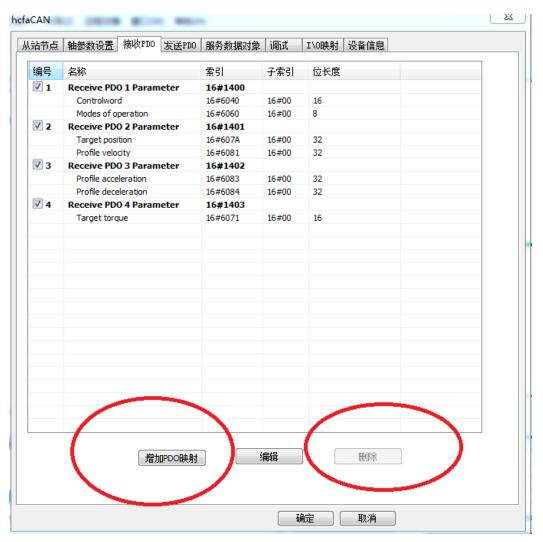
轮廓位置环要设置基本参数包括:

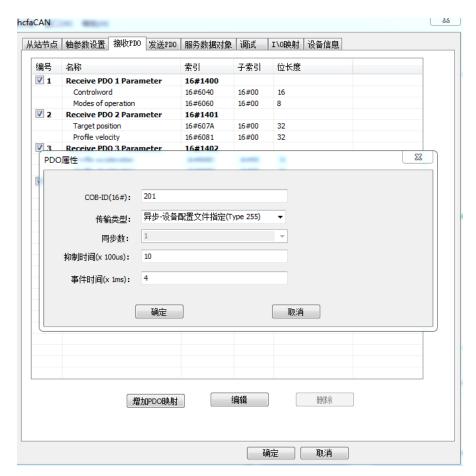
TOWNER TOWNER.				
索引	名称	说明		
60400010	控制字	使能,清除报警等		
60600008	控制模式	轮廓位置模式=1		
607A0020	07A0020 给定目标位置			
60810020	轮廓位置环速度给定			



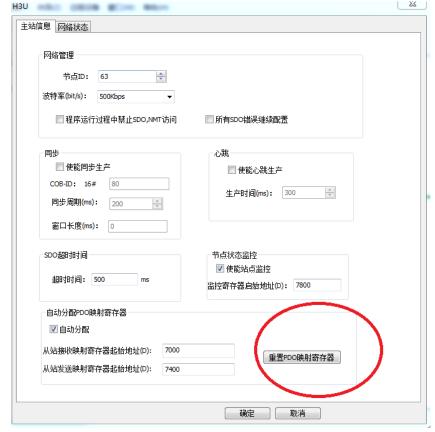
3.设置合适的同步传输类型

当传输模式为异步模式时:

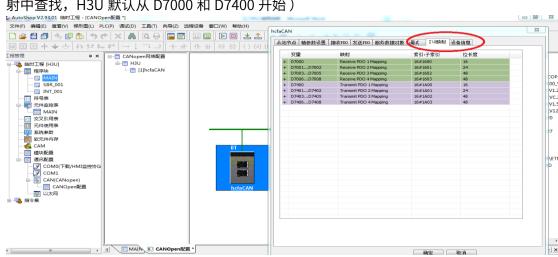

1.双击从站,"从站节点"页面,使用默认参数就行,不要开勾选"专家使能设置"


2. 组态合适的"接受 PDO"和"发送 PDO"参数,可点击"增加 PDO 映射"和"删除"。

轮廓位置环要设置基本参数包括:


16/1/12/12/12/12/12/12/12/12/12/12/12/12/1			
索引	名称	说明	
60400010	控制字	使能,清除报警等	
60600008	控制模式	轮廓位置模式=1	
		位置插补模式=7	
607A0020	给定目标位置		
60810020	轮廓位置环速度给定		

3.设置"接受 PDO"和"发送 PDO"的异步传输信息:要设置合理的抑制时间和事件时间,否则使用出现异常


6. 设置主站信息参数,重置 PDO 映射寄存器(为了重新组织所有 PDO 参数的地址)

第四步:编写 PLC 程序

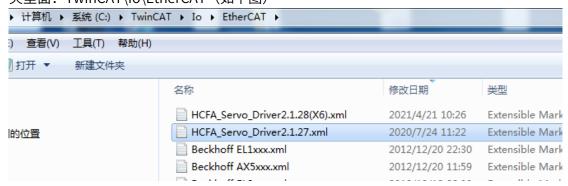
(友情提示: CANopen 所组态伺服驱动器从站参数的地址可: 双击从站图标→ I/0 映

射中查找,H3U 默认从 D7000 和 D7400 开始)

第五步:编译,运行 PLC 程序

8.4 J3EB 与倍福 PLC 连接 EtherCAT

本案例以 J3EB 伺服驱动器与倍福 CJ3020+EK1110EtherCAT 模块连接,简单说明同步周期位置模式的使用过程。


准备工作

伺服驱动器:

伺服驱动器控制模式 P0.01=7(EtherCAT 模式),如有多台伺服驱动器使用,要严格按照上进下出的网口顺序插好网线(注意不要加终端电阻,不用设置 P9.00 地址);

倍福 PLC:

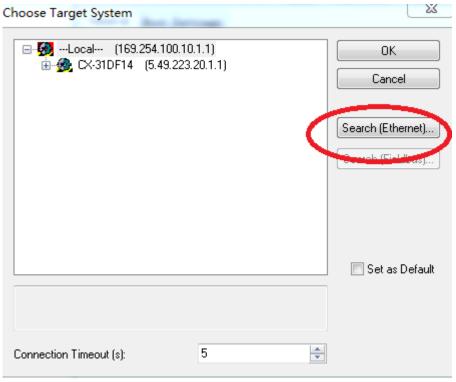
- 1. 下载安装倍福 PLC 上位控制软件 TwinCAT (本案例软件版本为 V2.11)
- 2. 添加 xml 设备描述文件: 把禾川 J3E 伺服 EtherCAT XML 设备描述文件放在下面文件 夹里面: TwinCAT\Io\EtherCAT(如下图)

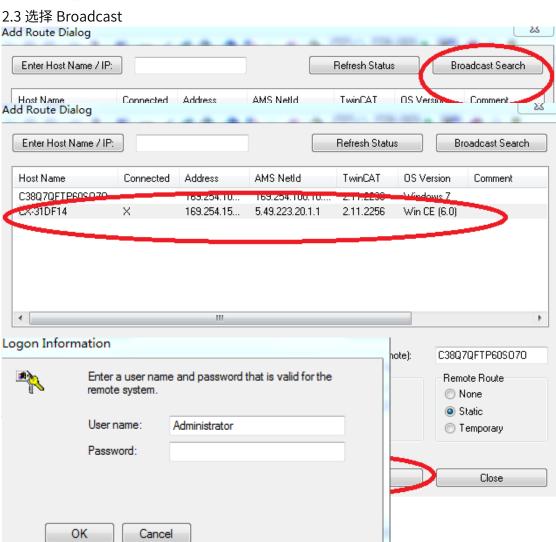
(注意:XML 文件可向禾川相关人员索要,且版本在不断维护更新中)

◆ 连接使用流程

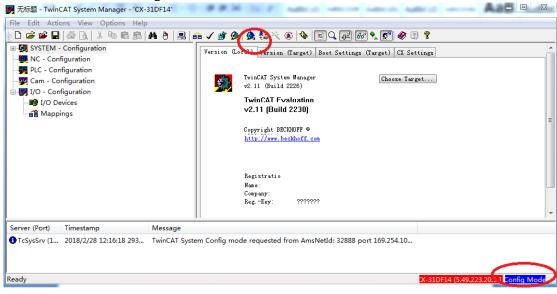
第一步:连接 PLC,建立工程:

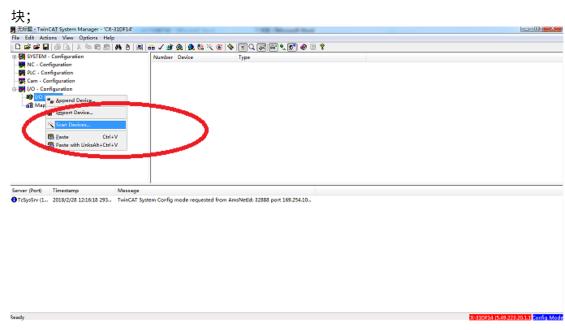
1.将电脑 IP 地址设置成 PLC 的同一网段:


电脑→本地连接→属性→internet 协议版本 4(TCP/Ipv4)属性→使用下面的 IP 地址,如下图(默认为 169.254.X.X):



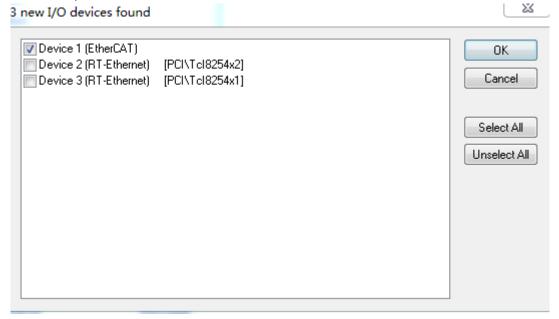
- 2.打开 TwinCAT SystemManager(右键系统托盘图标),新建(file->New),Choose target,搜索 CX。Search(Ethernet)->broadcast search,如图:
 - 2.1 新建工程后选择: Choose target


2.2 点击 search (Ethernet)

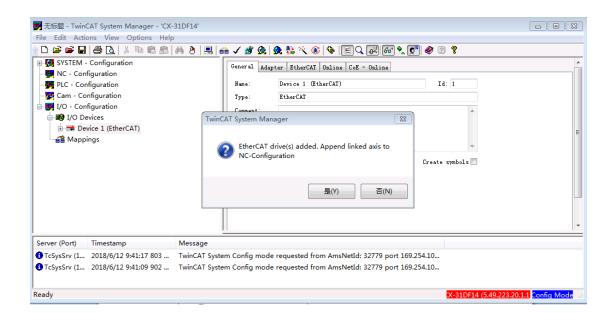


3.连接成功后,切换到 config 模式。

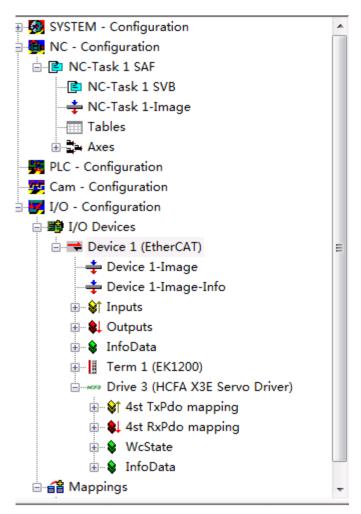
第二步: PLC 组态 J3E 伺服驱动器


1. 倍福 PLC config 模式下,右键 I/O devices->scan devices,PLC 自动搜索相连接模

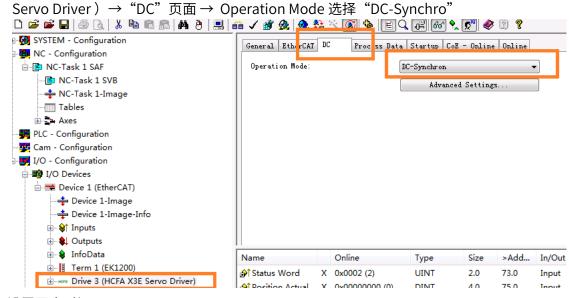
2.点击确定


3.点击 OK;

4.搜索模块,点击是(Y);

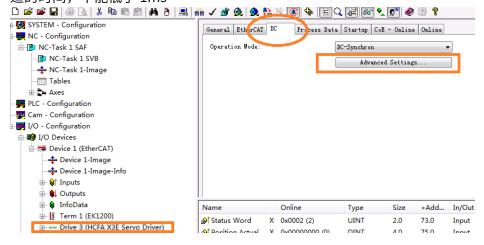

5. 添加运控轴,点击是(Y);

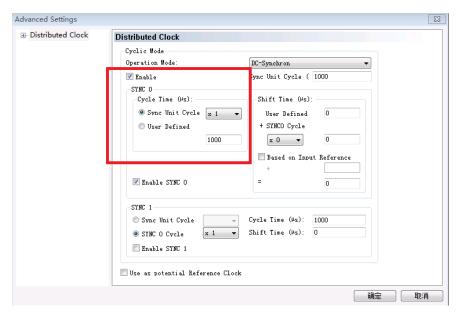
6.搜索完成,点击否;


7.发现 J3E 伺服驱动器,如图:

第三步: 设置伺服相关参数

1. 设置为同步周期模式

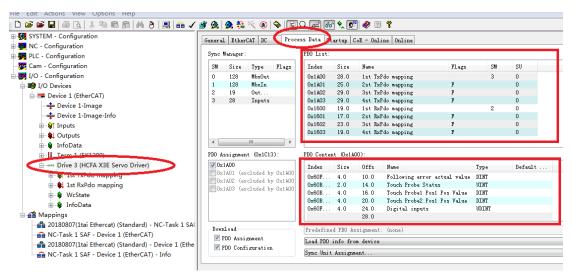

I/O-Configuration \rightarrow I/O device \rightarrow Device 1 (EtherCAT) \rightarrow Drive 3 (HCFA J3E



2. 设置同步时间

I/O-Configuration→ I/O device→Device 1 (EtherCAT) → Drive 3 (HCFA J3E

Servo Driver $) \rightarrow$ "DC"页面 \rightarrow Advanced Settings \rightarrow Cycle time (us),选择合适的时间,不能低于 1ms



3. 配置 PPDO 对象

伺服自身有一些默认的 Tx/Rx PDO 参数,用户也可以根据实际使用情况自行添加所需的 Tx/Rx PDO 参数。步骤如下:

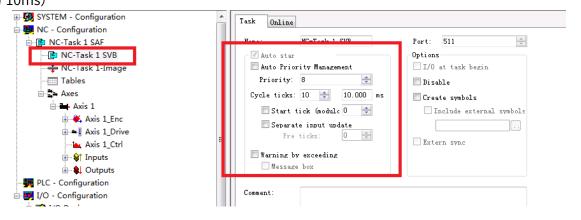
I/O-Configuration \rightarrow I/O device \rightarrow Device 1(EtherCAT) \rightarrow Drive 3(HCFA J3E Servo Driver) \rightarrow "Process Data"页面 \rightarrow "PDO list"框 选择 1st TxPdo mapping 或者 1st RxPdo mapping(默认使用第一组 Tx/Rx PDO 参数,也可以选择其他组参数) \rightarrow "PDO Content"框右键进行 PDO 编辑或者插入(1 个 Tx/Rx PDO 组目前最多能组态 20 个对象)



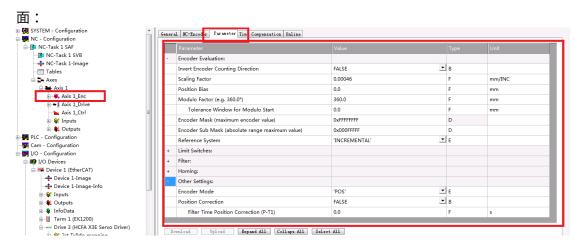
第四步:设置运控轴相关参数

1.设置 PLC 任务运行周期

(路径规划、设置位置和刷新 IO 数据的任务周期,NC 任务优先级别高于 TwinCAT PLC)


NC-Configuration \rightarrow NC-Task1 SAF \rightarrow Task 页面 \rightarrow Cycle ticks 设置合适周期(不能

2.设置 NC Task SVB 周期


(这是 NC 检测状态、处理故障的任务周期。如无需要,使用默认值即可)

NC-Configuration → NC-Task1 SVB → Task 页面 → Cycle ticks 设置合适周期(默认为 10ms)

4. NC 轴 Enc 编码器设置

NC-Configuration \rightarrow NC-Task1 SAF \rightarrow Axes \rightarrow Axis 1 \rightarrow Axis 1_Enc \rightarrow Parameter $\overline{\bigcirc}$

Invert Encoder Counting Direction:编码器计数方向取反,默认为 False,如果希望电机正向转动的而位置反馈值减小,就需要置为 True,同时也应将电机极性取反;

Encoder Evaluation: Scaling Factor 量化因子,每个位置反馈的编码器脉冲对应的距离:写入合适数值(对于空载调试,习惯上,把一圈设置为 60mm,这样,1mm/s的速度就相当于 1 圈/min。因为电机的额定速度单位是 1rpm,调试时以 1rpm 为速度单位比较直观,禾川 1rbit 电机此值一般设置为 100000=0.006(P0.08=10000 时,如 10008=131072,则数值应该是 100131072=0.000457763671875),

Position Bias: 伺服轴的零位与编码器零位之间的偏移,机械安装固定后,此值就不变。仅当使用绝对编码器时,才需要设置此项

Modular Factor:模长。通常指一个工艺周期 Axis 运动的距离。对于不用在一个模长范围内定位的轴,不用设置。不带负载调试时,常用电机转动一圈的距离模长,比如360mm。

Reference System:参考点坐标系,使用默认值。

Other Setting: Encoder Mod 选择合适编码器类型

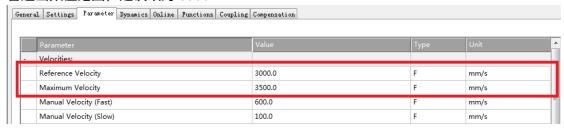
Pos:编码器只用于计算位置,上位机只负责发位置指令,伺服运行在周期同步位置模式(CSP,6060H=8)时候使用;

PosVelo: 编码器只用于计算位置和速度,上位机建立位置环,输出速度指令,伺服运

行在周期同步速度模式(CSV,6060H=9)时候使用;

PosVeloAcc: 编码器用于计算位置、速度和加速度,当速度环在 TwinCAT NC 时使用

5. NC 轴 Driver 编码器设置

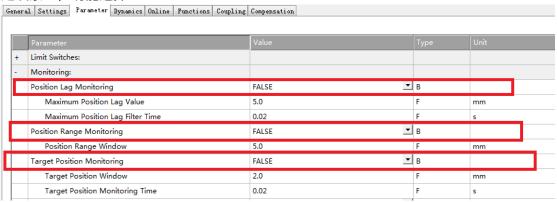

Output Scaling: Invert Motor Polarity 电机极性取反。当给电机一个正的速度值,电机顺时针转动时,此值为 true。注意,同时也应将编码器方向取反 (NC 轴 Enc 编码器设置下面 Invert Encoder Counting Direction 项)

6. Axis 轴参数设置

NC-Configuration → NC-Task1 SAF→ Axes →Axis 1 → Parameter 页面:

Velocities: Reference Velocity 鉴于 Scaling Factor=0.006(P0.08=10000 时)或者为 0.000457763671875(P0.08=131072 时),给定速度不能使用默认值 2200,否则容易报 警超出数值范围,建议改 3000

Velocities: Maximum Velocity 鉴于 Scaling Factor=.006(P0.08=10000 时)或者为 0.000457763671875(P0.08=131072 时),最大速度不能使用默认值 2200,否则容易报 警超出数值范围,建议改为 3500

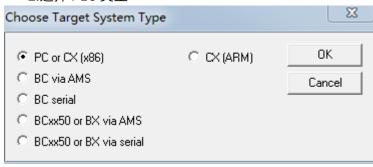

Dynamics: Acceleration/Deceleration/Jerk 加速度/减速度/加加速度,根据使用需求设置合适值,特别是加加速度,数值偏小可能会导致加速度值上不去

-	Dynamics:			
	Acceleration	15000000.0	F	mm/s2
	Deceleration	1500000000.0	F	mm/s2
	Jerk	225000000000000000000000000000000000000	F	mm/s3

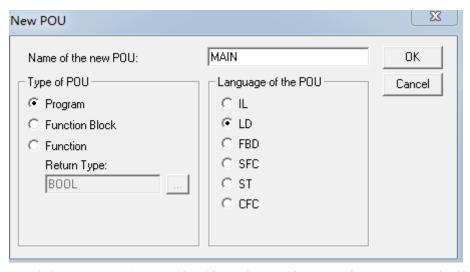
Limit Switches:软限位设定,根据需求设置默认为没有软限位

Monitoring: 位置偏差,不建议使用,伺服内部已经有位置偏差过大设定(P0.16),

建议禁止,功能选择 FALSE

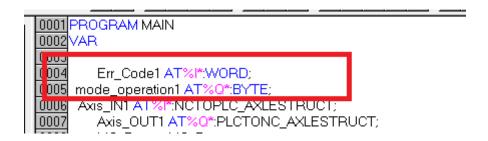


第五步:建立 PLC 编程程序,


2. 打开 TwinCAT PLC 软件,新建工程;

2.选择 PLC 类型

3.选择编程类型,本例选择 LD 梯形图;


4. 建立工程后,进行 PLC 编程前需要把 NC 轴、PDO 变量和 PLC 程序对接。

4.1PDO 变量对接步骤:

虽然在建立工程时候已经添加了 NC 轴,NC 轴已自动进行了部分 PDO 进行对接,但还有一部分 PDO 参数是没有进行对接的,如果要在 PLC 程序中使用这些参数,必须进行对接设置。步骤如下:

进入编程页面,建立定义变量:如图,RPDO参数后缀只能为AT%I*:+变量长度单位,TPDO定义变量后缀只能是AT%Q*:+变量长度单位,变量名可以自由命名.

如图 Er_Code1 AT%I*:WORD 和 mode_operation1 AT%Q*:BYTE 分别代表错误代码 603Fh 和控制模式 6060h。

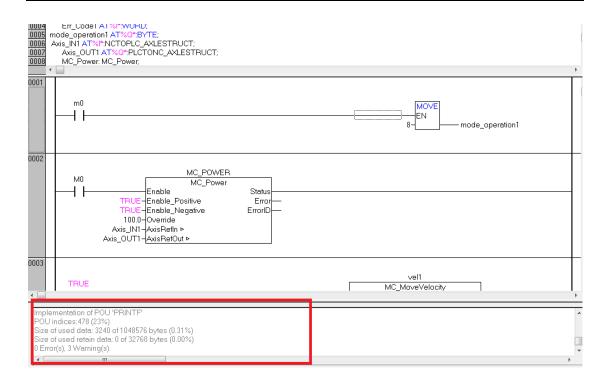
4.2 建立 NC 轴连接

为了进行 PLC 编程,使用运控库指令。必须要进行 NC 轴连接。NC 轴连接类型为 NCTOPLC AXLESTRUCT 和 PLCTONC AXLESTRUCT,具体形式如下:

Axis_IN1 AT%I*:NCTOPLC_AXLESTRUCT;

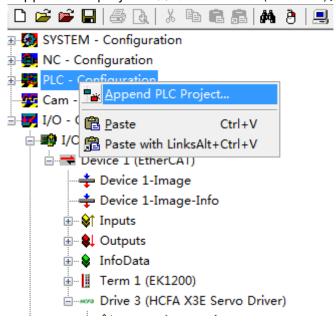
Axis_OUT1 AT%Q*:PLCTONC_AXLESTRUCT;

(红色加粗字体为自由命名,符合相关命名字符要求即可)


```
0001 PROGRAM MAIN
0002 VAR
0003
0004 Err_Code1 AT%I*:WORD;
0005 mode operation1 AT%Q*:BYTE;
0006 Axis_IN1 AT%I*:NCTOPLC_AXLESTRUCT;
0007 Axis_OUT1 AT%Q*:PLCTONC_AXLESTRUCT;
0008 MC_Power;
```

5.编写 PLC 工程: 下面为简单的使能、恒速运行程序

(注意:编程中的目标位置、目标速度单位分别是 mm、mm/S,不是我们常用的脉冲个数、rpm)

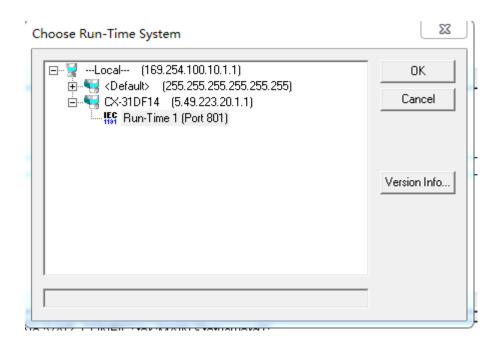

```
0001
                  m0
                                                                                                                                                                MOVE
EN
                                                                                                                                                                                    mode_operation1
0002
                                                                 MC_POWER
MC_Power
                  МΩ
                                      Enable
TRUE-Enable_Positive
                                                                                             Error
                              TRUE - Enable_Positive
TRUE - Enable_Negative
100.0 - Override
Axis_IN1 - AxisRefIn >
Axis_OUT1 - AxisRefOut >
                                                                                           ErrorID
0003
                                                                                                                                                              vel1
                TRUE
                                                                                                                                                   MC_MoveVelocity
                                                                                                                                     EN
Execute
                 + +
                                                                                                                                                                                                        -M2
                                                                                                                               m1-
                                                                                                                                                                              InVelocity
                                                                                                                               v1 – Velocity
A1 – Acceleration
A2 – Deceleration
                                                                                                                                                                  CommandAborted
                                                                                                                                                                                    Error
                                                                                                                                                                                  Errorld
                                                                                                                                     Jerk
Direction
                                                                                                                       Axis_IN1 - Axis ▶
```

6.完成后先保存(save),之后编译(Project->reBuild all),生成 tpy 文件。

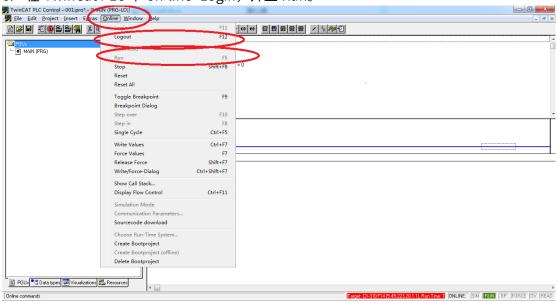
第六步: 建立 J3E 参数与 PLC 定义变量的链接;

4. winCat SystemManager 中添加 PLC 程序的 tpy 文件(右键 PLC configuration->append PLC project…),做变量的链接(linked to);

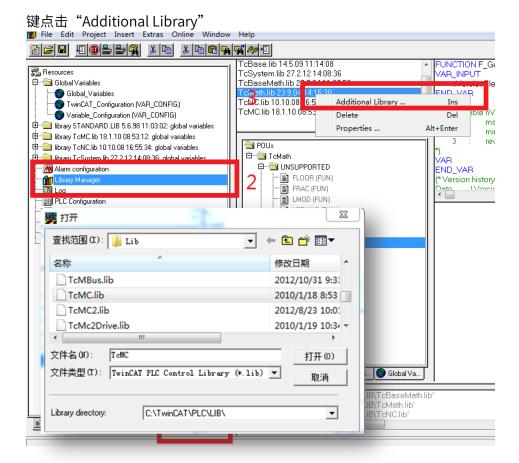

2.选定 MAIN.Axis_IN1,Linked to 中选择 Axis 1_ToPlc . Outputs . Axis 1 . Axis 1 . Axes . NC-Task 1 SAF

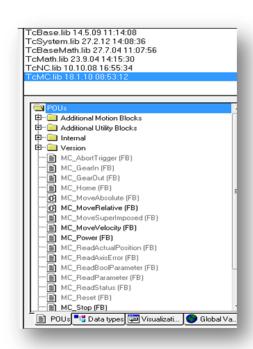

3.同理,也为其它 3 个参数(Er_Code1、 mode_operation1、Axis_OUT1)建立相应的链接;

第七步: 运行程序


1.激活 TwinCat SystemManager 配置,分为 3 个步骤,如图,最后进入 Run 模式。

5. 在 TwinCat PLC 中选择下载路径 online->choose runtime-system。


6. 在 TwinCat PLC 中 on-line -Login, 并且 Run。


- 5. 如果要在 CX 断电后依然能够运行所编写的 PLC 程序,点击 Online->create bootproject。
- 6. 如果为了将来能够将程序上载,Online->sourcecode download

附: 倍福 PLC 需要用到运控库指令时需要添加运动控制库,有时候 TwinCAT 不一定有运动控制库 TCMC.LIB,这时候需要手动添加。步骤如下:

Twincat PLC Control 页面→Resources 页面→双击 "Library Manager" →弹出页面框右

加载成功后如下图所示:

同样,需要用到电子凸轮时候,要安装 Supplement: TwinCAT\ Supplement\

TwinCAT_NC_Camming, 也要加载运控库: TcNcCamming.lib

8.5 J3EB 与欧姆龙 PLC 连接 EtherCAT

以周期同步位置模式控制(CSP)为例子,说明 J3EB 伺服驱动器与欧姆龙 NJ501-1300 连接使用过程。

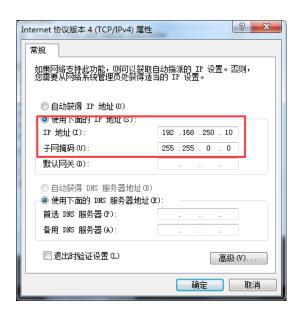
准备工作

伺服驱动器:控制模式 P00.01=7(EtherCAT 模式),如有多台伺服驱动器使用,要严格按照上进下出的网口顺序插好网线,并设置好伺服驱动器站号(P09.18 设置);


欧姆龙 PLC: 下载安装欧姆龙 PLC 电脑控制软件 Sysmac studio(以 V1.30 版本为例)

注意:XML 不定期维护更新,如需最新版本请到禾川官网下载,联系禾川技术咨询

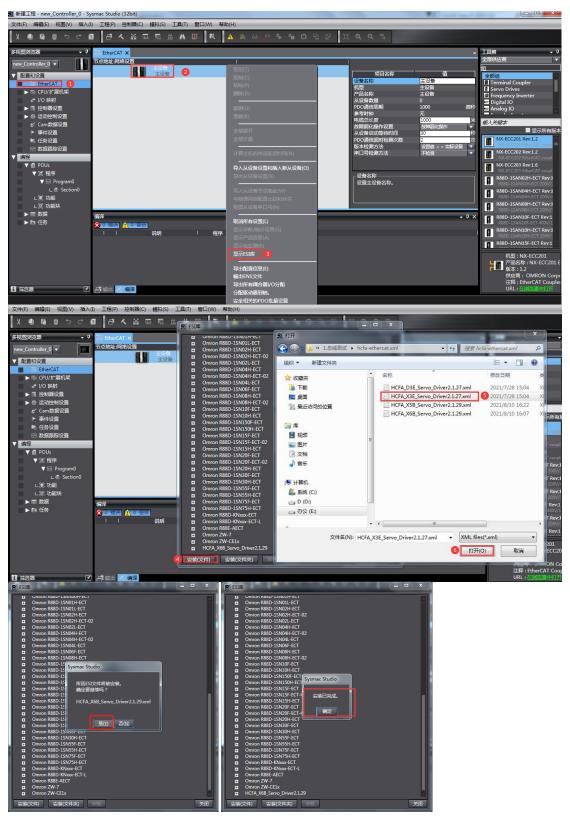
连接使用过程如下:


第一步:连接 PLC,分为 USB 连接和网络连接

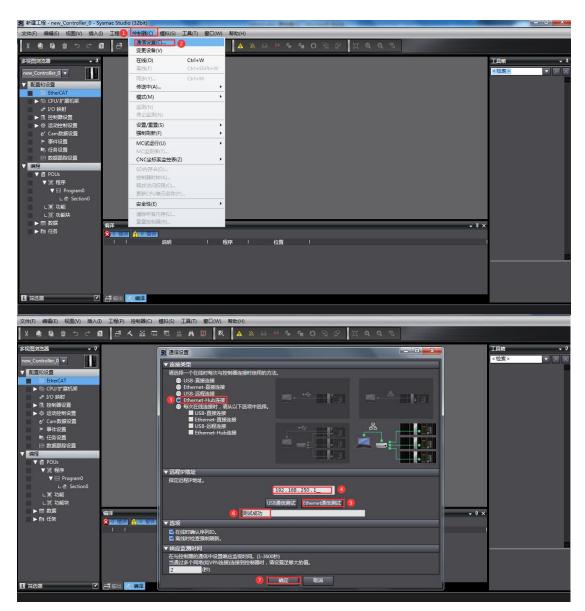
◆当为 USB 连接时:



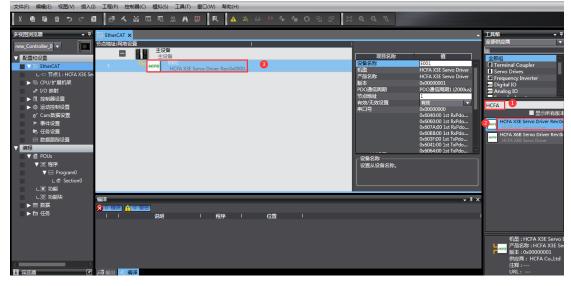
◆当为网络连接(EtherNet 网口)时


请将电脑 IP 地址设置成 PLC 的同一网段: 电脑→本地连接→属性→internet 协议版本 4 (TCP/Ipv4) 属性→使用以下 IP 地址:

第二步:添加 XML 配置文件

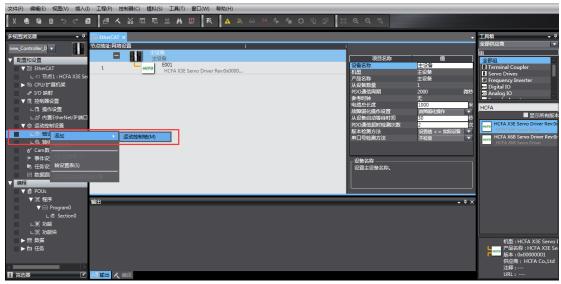


添加 XML 文件步骤: ①点击 "EtherCAT" →②选择 "主设备" 点击右键→③点击 "显示 ESI"→④安装(文件)→⑤选择 XML 文件→⑥点击打开:

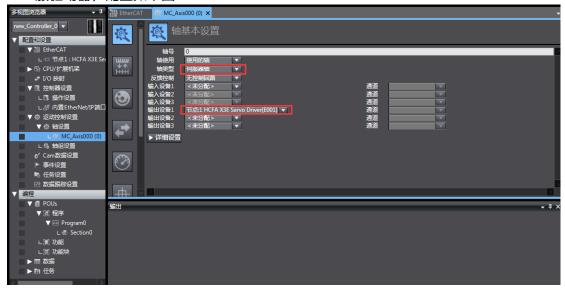


第三步:连接控制器,设置 EtherCAT 相关参数

◆ 连接控制器: ①点击 "控制器" →②选择 "通信设置" →③选择 "Ethernet-Hub连接" →④指定远程 IP 地址填写 "192.168.250.1" →⑤Ethernet 通信测试→⑥显示 "测试成功" →⑦点击 "确定"



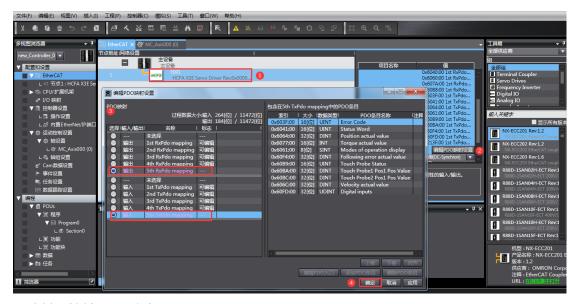
◆ 添加从站: ①搜索 "hcfa" →②选中 "HCFA J3E" 双击→③显示已添加从站



◆ 添加运动轴(PLC 要在离线状态下)

主菜单 "控制器 (C)" → 离线 → 展开 "运动控制设置" → 轴设置 → 添加 "运动控制轴"

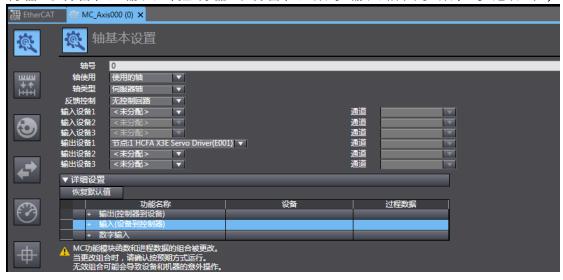
- ◆ 设置运控轴参数
- ① 添加伺服轴:轴基本设置页面,轴类型设置为伺服轴,"输出设备 1" 配置为 J3E 伺服驱动器,配置如下图



② 配置合适 PDO 参数

A.启用 DC 同步,选择合适的 PDO 映射参数组:

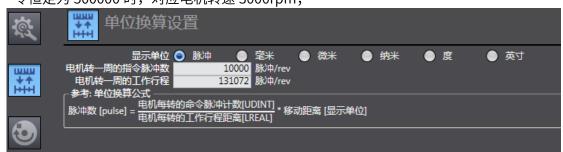
EtherCAT→节点地址/网络设置页面 →电机 J3E 从站 E001→ 分布式时钟有效,选择 "启用(DC-Synchron)" → 编辑 PDO 映射设置 , 选择合适的 Rx/Tx PDO 参数 ,


注意: 欧姆龙推荐选用第五组 PDO 固定组映射,其他组 PDO 可以编辑添加,删减

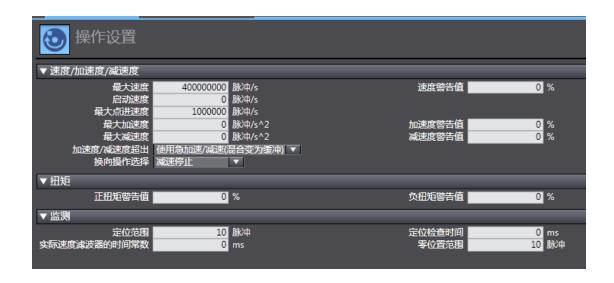
B.映射运控轴 PDO 参数

伺服驱动器必须手动配置 PDO 参数,

双击: $MC_Axis000(0)$,进入轴基本设置页面 \rightarrow 点击详细设置 \rightarrow 分别配置输出(控制器到设备)、输入(控制器到设备)、数字输入相关参数,示范如下;



(注意: 未分配参数可根据使用需求再配置,如不需要接入限位开关,可用任意 60FDh_0.3~60FDh_0.9 代替 60FDh_00.1 和 60FDh_00.0)


◆ 单位换算设置

MC_Axis000 (0) 页面 \rightarrow 单位换算设置页面 \rightarrow 设置合适的参数,示范如下:电机一周的工作行程:目前禾川普遍使用是 17bit 分辨率编码器,应设置为 131072;电机转一周指令:根据需求来设置,如果 P09.13=1105 则齿轮比使用 P00.08(默认 10000),即表示 10000 个 PLC 脉冲指令对应电机转动一圈 131072 编码器单位,当指令恒定为 500000 时,对应电机转速 3000rpm;

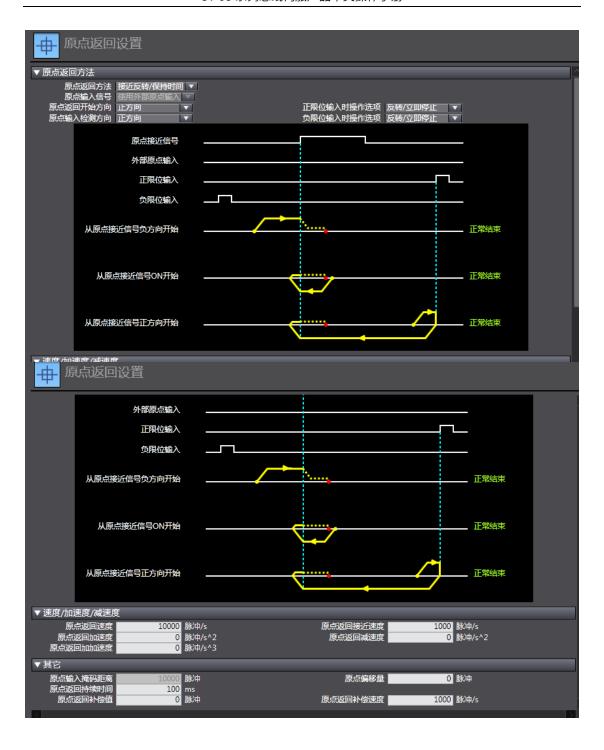
◆ 操作设置

根据实际使用设置,最大加减速为 0 表示最大的加减速度,扭矩为 0 表示不警告。如没特殊需求可使用默认值。

◆ 限位设置

可根据实际使用设置参数。

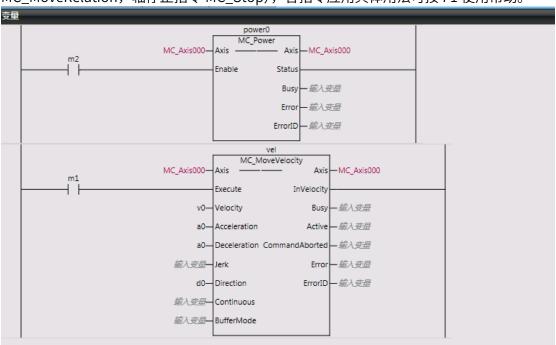
注意:回原完成后,限位才生效



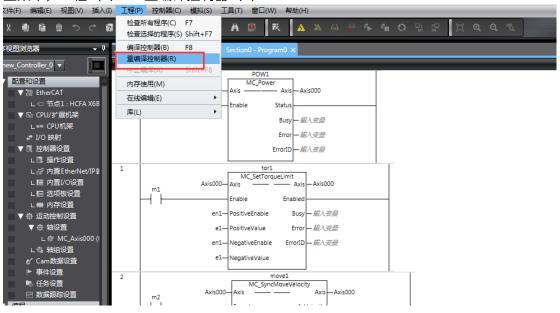
◆ 原点返回设置

此回原是欧姆龙自定义回原,与伺服驱动器内置的回原方法没有关系。但使用时候也要伺服设置好相关参数(正、负限位,原点开关等),外部信号直接接入伺服驱动器即可,不必要接入 PLC,但欧姆龙 PLC 回原的相关参数一定要按照下面设置。再设置好回原速度、原点偏置等参数后,在 PLC 编程中使用 MC_home 即可回原。

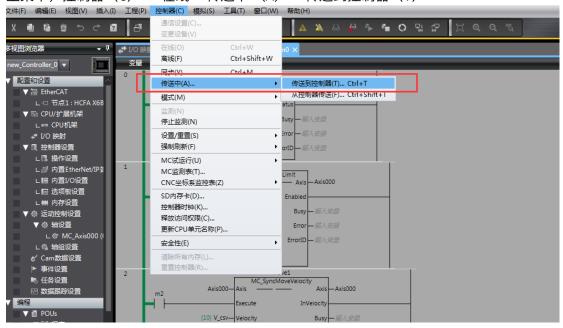
注意: 欧姆龙中的原点接近信号就是伺服中的原点开关信号


第四步:设置同步周期时间(建议不要低于 1ms,周期时间>伺服从站台数 X0.1ms) 双击 "任务设置",进入任务设置页面 \rightarrow 选择合适的周期,共有四个选项: 500 微秒,1 毫秒(默认值),2 毫秒,4 毫秒

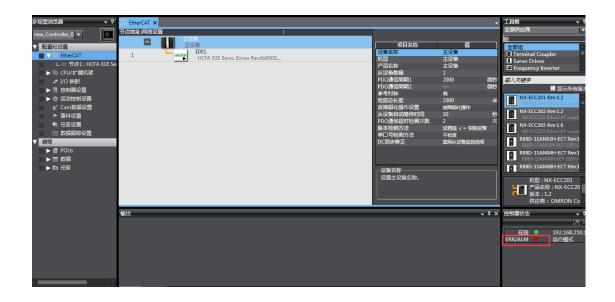
第五步:编写 PLC 程序(以梯形图为例)

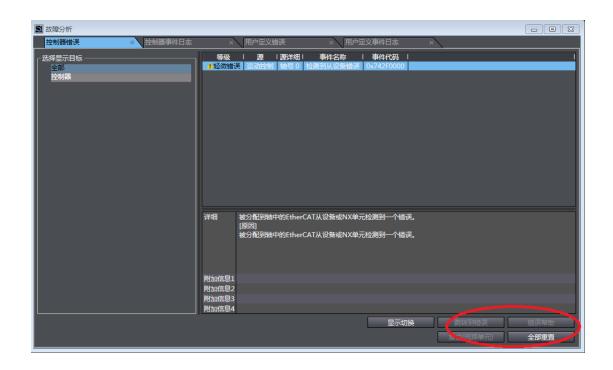

编程 \rightarrow POUs \rightarrow 程序 \rightarrow Program0 \rightarrow 双击 Section0(如没有这部分显示,在 Program0 选择插入梯形图),进入编程页面。

注意,为使电机有效运行,编程至少要使能指令(MC_Power),运动指令(如恒速转动指令 MC_MoveVelcity , 绝 对 位 置 指 令 MC_MoveAbsolute,相 对 位 置 指 令 MC_MoveRelation,轴停止指令 MC_Stop),各指令应用具体用法可按 F1 使用帮助。

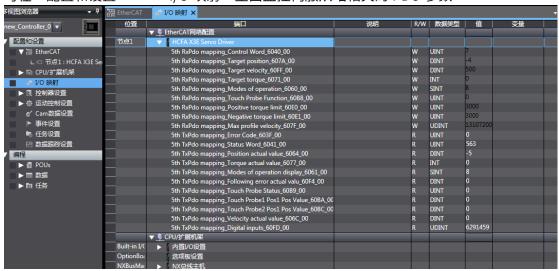

第六步:编译工程(离线状态下)

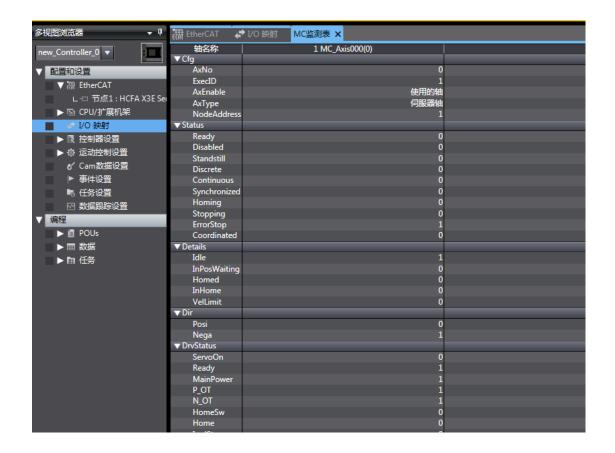
主菜单,工程(P)→ 重编译控制器(R)




第七步:下载工程到 PLC

主菜单,控制器(C)→ 在线→传送中(A)→传送到控制器(T)


第八步:如有报错时,sysmac Studio 右下角有红色报警圆点提示 部分报警可以通过软件内置功能清除:主菜单,工具(T)→ 故障分析(T)→ 弹出窗口,点击"全部重置"



第九步:数据监控

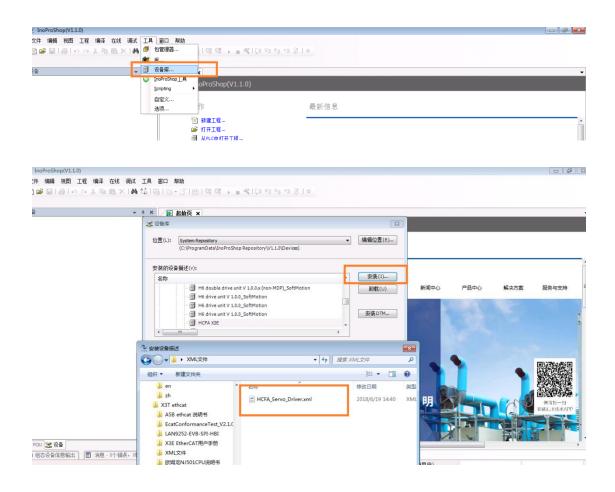
可在"配置和设置"——"I/O映射"里面监控伺服从站相关的 PDO 参数

可在主菜单→控制器→ "MC 检测表"里面监控伺服从站相关 DI、DO、各种状态等

第十步: 导出工程

已编辑好的欧姆龙 PLC 工程需要在其它电脑使用时,需要导出工程(注意"另存为"并不能导出)

方法:编程页面 \to 文件(F) \to 导出(E),选择保存的文件名、保存类型、保存位置,选择"保存"

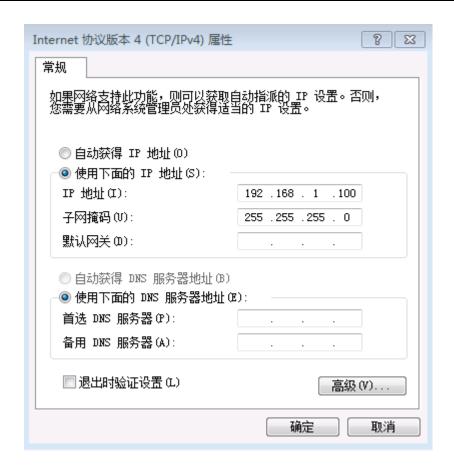

8.6 J3EB 与汇川 PLC 连接 EtherCAT

本案例通过 3 台 J3EB 伺服与汇川 PLC AM400 走同步周期模式为例子简单说明连接使用步骤

准备工作

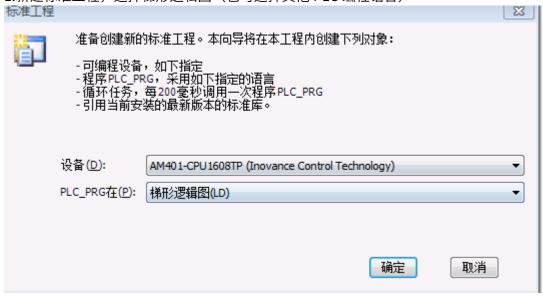
- 1.伺服驱动器控制模式 P0.01=7(EtherCAT 模式),如有多台伺服驱动器使用,要严格按照上进下出的网口顺序插好网线
- 2.下载安装 AM400 上位机软件,具体见汇川官网,本次使用版本为 InoProShopV1.1.0;
- 3.安装 J3E_EtherCAT 设备描述文件: HCFA_Servo_Driver.xml(如没有,可向相关技术人员索要)

InoProShop 软件初始页面 → 工具 → 设备库 → 安装,安装 J3E_EtherCAT 设备描述文件: HCFA_Servo_Driver.xml

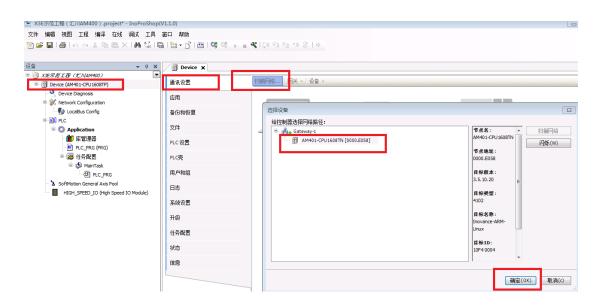


J3E_EtherCAT 伺服与汇川 AM400 连接步骤

步骤一: 电脑连接汇川 AM400 PLC


1. 将电脑 IP 地址设置成 PLC 的同一网段

电脑-本地连接 \rightarrow 属性 \rightarrow internet 协议版本 4(TCP/Ipv4)属性——使用下面的 IP 地址,如下图(为 192.168.1.X(X 为 1~255 非 88 数值),汇川 CPU 出厂默认地址为 192.168.1.88):

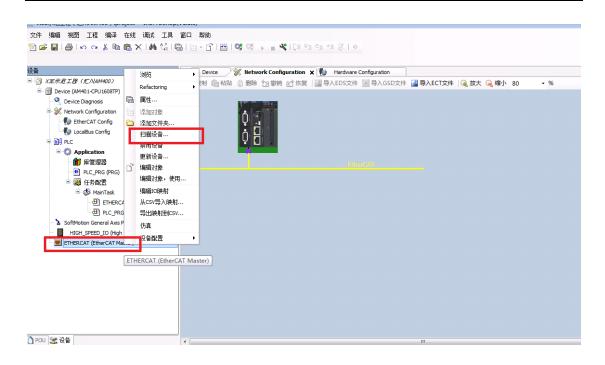

2.建立新工程

1.新建标准工程,选择梯形逻辑图(也可选择其他 PLC 编程语言)


3.连接 PLC

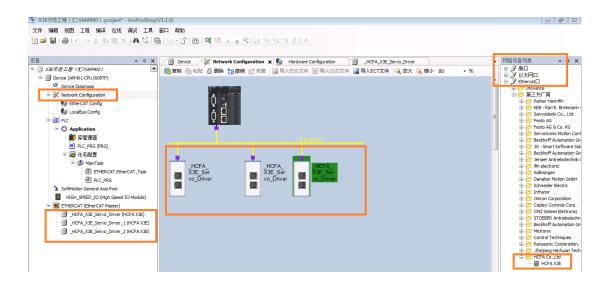
双击 Device (AM401-CPU1608TP) \rightarrow 通讯设置 \rightarrow 扫描网络 \rightarrow 选择 "AM401-CPU1608TN[000.E058]" \rightarrow 选择 "确定"。

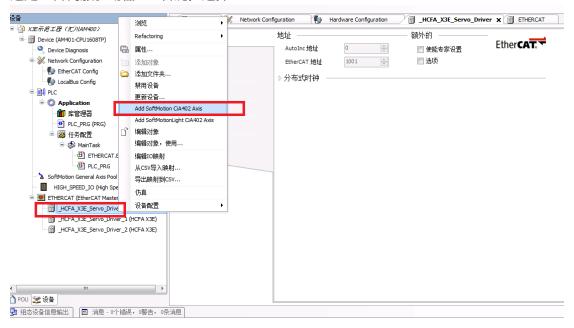
步骤二:添加 EtherCAT 主站


双击 Network Configuration →选项 "EtherCAT 主站"打钩

步骤三:添加伺服从站

方法 1: 自动添加

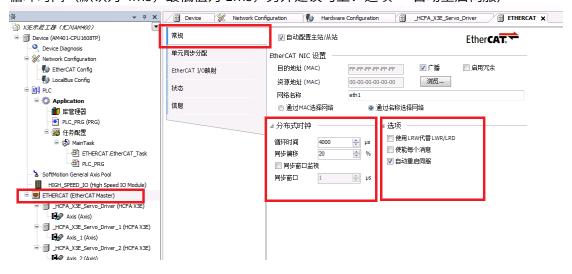

右键点击 "ETHERCAT(EtherCAT Master)" \rightarrow 扫描设备 \rightarrow 扫描到伺服后,点击 "复制所有设备到工程中"


方法 2: 手动添加

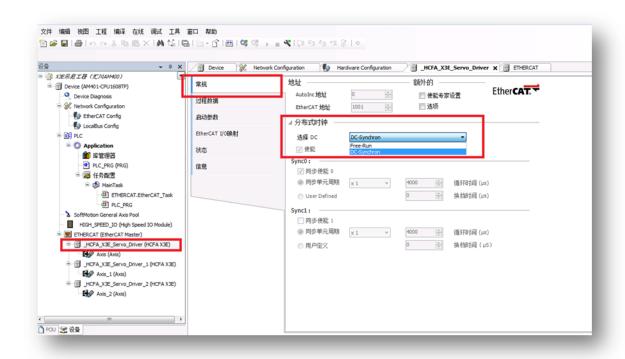
双击 Network Configuration → 网络设备列表 → EtherCAT 口,第三方厂商 → HCFA → Co.,Ltd 拖动 HCFA J3E 图标到总线下面

步骤三:添加运控轴

选定一台伺服驱动器 → 右键,选择 "Add SoftMotion CiA402 Axis"



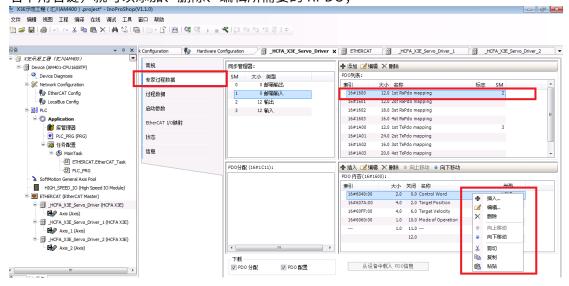
同理,为其它2台伺服从站添加运控轴,添加运控轴后效果如下:



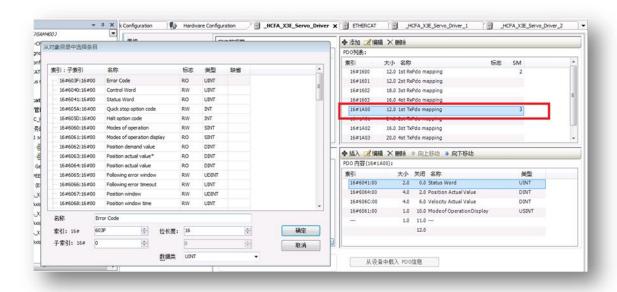
步骤四:设置相关参数

1.设置同步单元周期: ETHERCAT(EtherCAT Master) \rightarrow 常规 \rightarrow 分布式时钟,设置合适的循环时间(默认为 4ms,最低值为 1ms,另外建议勾上:选项 \rightarrow 自动重启伺服)

2.设置伺服从站的分布式时钟:选定伺服→常规→分布式时钟→选择"DC-Snchron"



同理,为其它 2 台伺服从站设置为 "DC-Snchron"


3.伺服从站添加、删减 RPDO/TPDO(默认使用第一组 RPDO/TPDO 参数,如无必要,使用默认参数就可,下面以修改第一组 RPDO/TPDO 为例,简单介绍方法):

双击选定要修改 RPDO/TPDO 的伺服→常规→勾选"使能专家设置"→转到"过程数据"页面→勾选 16#1600 1st Rxpdo mapping 和 16#1A00 1st Txpdo mapping→转到"专家过程数据"页面 → 右上角选定"16#1600 1st Rxpdo mapping"

右下角右键,就可以添加、删除、编辑所需要的 RPDO;

右上角选定"16#1A00 1st Txpdo mapping" \rightarrow 右下角右键,就可以添加、删除、编辑所需要的 TPDO;

4.添加 启动参数(如有必要,只在上电启动时进行一次操作)

选定要启动参数的伺服 → "启动参数页面" →Add →添加启动参数,设置合适数值

5.运控轴类型设置:

选定任一伺服从站运控轴 → 页面 "SoftMotion 驱动:基本的"→轴类型与限制:轴类型应用场合:

1.虚轴模式:没有接入实际伺服电机的场合

2.周期模式:单方向运转类型的转轴,采用线性模式容易出现位置计数溢出,导致位置计

算错误

3.线性模式:对于往复运行机构,其行程是有限的(默认使用)

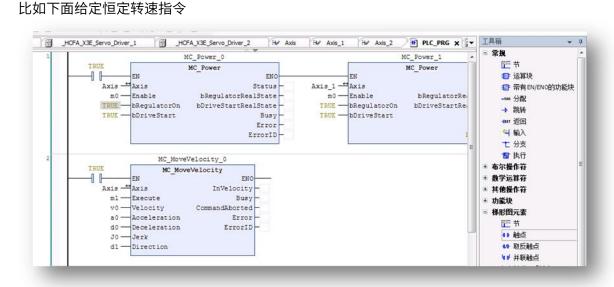
注意: 所有运控轴都要设置相应的轴类型

6.设置伺服软限位(如有必要,此处限位指的是 PLC 给定命令限位,非伺服编码器反馈限位)

选定要软限位的伺服从站运控轴→ 页面 "SoftMotion 驱动:基本的"→ 勾选 "软件限位",设置合适的正负限位数值

7.运控轴编码器分辨率设置

选定任一伺服从站运控轴 → 页面 "SoftMotion 驱动:缩放/映射" 设置合适的编码器分辨率


此参数关系到电子齿轮比,如果不考虑负载的减速机、导程等情况,只考虑电机转一圈的脉冲数的话,使用默认参数,即使用 J3E 内部电子齿轮比情况下,可以按照以下设置:

"增量"设置为 P0.08 数值: 例如当 P0.08=10000, 此数值设置为 10000, 当 P0.08=131072, 此数值设置为 131073,

"应用的单元就是转动一圈的脉冲数,如果想 10000 脉冲转一圈电机轴,设置为 10000,如果想运控指令转速与实际电机转速数字重合对应,"应用单元"应该填写为 60

步骤五:编写 PLC 程序

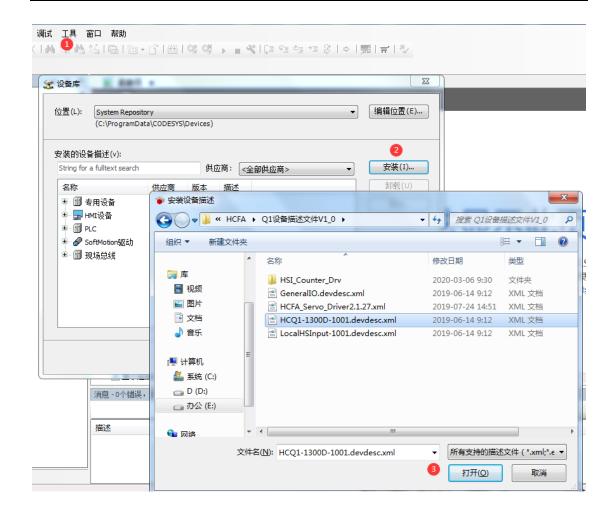
比较常用运控指令包括以下:

使能指令(MC_Power),如恒速转动指令 MC_MoveVelcity ,绝对位置指令 MC_MoveAbsolute,相对位置指令 MC_MoveRelation,轴停止指令 MC_Stop)等

步骤六:编译、下载工程

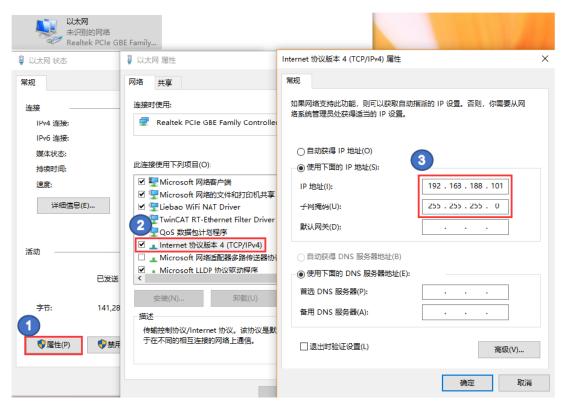
步骤七:运行 PLC 程序

注意: PLC 使用问题,运控指令等详细使用情况可参考汇川 PLC 使用说明书

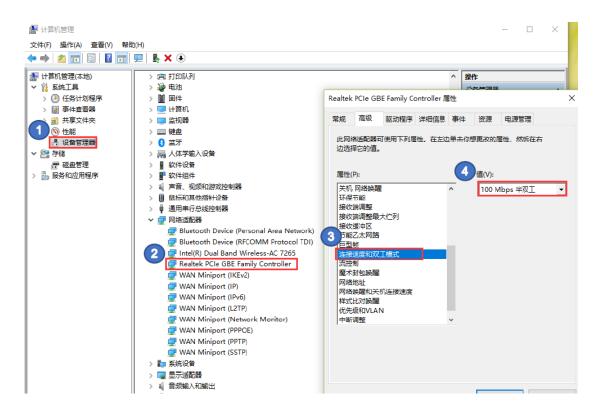

8.7 J3EB 与禾川 HCQ1 连接 EtherCAT

本案例通过 J3EB 伺服与禾川 HCQ1-1300-D 通讯为例,简单说明连接使用,详细使用步骤请查阅禾川 Q 系列软件使用手册

准备工作


- 1.伺服驱动器控制模式默认 P0.01=7(EtherCAT 模式)
- 2.下载安装 CODESYS 软件,具体见官网,本次使用版本为 CODESYS V3.5 SP13;
- 3.安装 HCQ1-1300D 和 J3E_EtherCAT 设备描述文件;

CODESYS 软件初始页面 →工具→设备库→安装设备描述文件(HCQ1-1300D.devdesc.xml和 HCFA_Servo_Driver.xml),如下:



和 HCQ1-1300D建立通讯:


- 1.在 PC 平台安装好 CODESYS 软件之后,双击打开,然后按照上面准备工作,完成安装 HCQ1-1300D 和 J3E_EtherCAT 设备描述文件。
- Q1 控制器默认的 IP 地址是: 192.168.188.100 子网掩码: 255.255.255.0,在 PC 端网络适配器中修改 IP 地址到同一个网段,但是 IP 地址不重复:

2.在 PC 端的设备管理器中修改网卡的连接速度和双工模式为 100Mbps 半双工

3.完成 PC 端网卡的相关设置后,双击 CODESYS 软件新建项目下左侧树形菜单 "Device" 进入通讯设置,确保网关正确开启后,点击" Scan network",扫描到 Q1 之后选中设备,点击确定进行添加:

如果 CODESYS 网关未开启,在"通讯设置"页面中会显示成红色,需要用户自行开启

PC 右下角找到 CODESYS 图标,右击选择 StartGateway,启动网关,执行扫描和添加

正确添加的设备显示如下,则通讯成功:

注: 详细使用请查阅 Q 系列软件使用手册。亦可参照 7.6 章节(同 CODESYS 平台)

9

9参数列表及对象字典

- ◆ 9.1 对象字典 1000H 组常用参数列表
- ◆ 9.2 对象字典 2100H 组伺服参数列表
- ◆ 9.3 对象字典 6000H 组协议参数列表

9.1 1000H 对象组一览表

索引	子索引	名称	数据类型	出厂设定值
1000h	00h	设备类型	Unsigned32	0x20192(131474)
1001h	00h	错误寄存器	Unsigned8	0x0
1002h	00h	制造商状态寄存器	Unsigned32	
1003h	00h	预定义错误域:错误数	Unsigned32	
	01h~FEh	标准错误域		
1005h	00h	同步 COB-ID	Unsigned32	
1006h		通讯循环周期	Unsigned32	
1007h		同步窗长度	Unsigned32	
1008h		制造商设备名称	VISIBLE_STRING	HCFA J3E Servo Driver
1009h		制造商硬件版本	VISIBLE_STRING	0.1
1010h	00	最高子索引数	Unsigned32	1
	01	保存所有参数	Unsigned32	0
100Ah		制造商软件版本	VISIBLE_STRING	5.1
100Ch		监护周期	Unsigned16	
100Dh		生存周期因子	Unsigned8	
1010h		保存参数	Unsigned32	
1011h		恢复缺省参数	Unsigned32	
1012h		时间戳对象 COB-ID	Unsigned32	
1013h		高分辨率时间戳	Unsigned32	
1014h		EMCY COB-ID	Unsigned32	
1015h		EMCY 抑制时间	Unsigned16	
1016h		消费者心跳超时	Unsigned32	
1017h		生产者心跳超时	Unsigned16	
1018h	0	对象身份		4
	1	供应商 ID		0x 000116C7
	2	产品编码		0x 003E0402
	3	修订号		0x002
	4	序列号		0x001
1019h		同步计数器溢出值	Unsigned8	
1020h			Unsigned32	
1021h		存储 EDS		
1022h		存储格式	Unsigned16	
1023h		OS 命令		
1024h		OS 命令模式	Unsigned8	
1025h		OS 调试接口	-	
1026h		OS 提示符命令接口	Unsigned8	
1027h		模块列表	Unsigned16	
1028h			Unsigned32	
索引	子索引	名称	数据类型	出厂设定值

1029h		错误行为对象	Unsigned8	
10F1h	0	错误设置索引数		2
	1	本地错误响应		0x001
	2	同步错误计数限制		0x00C (12)
1C00	0	同步管理类型子索引数		4
	1	子索引 1		0x01
	2	子索引 2		0x02
	3	子索引3		0x03
	4	子索引 4		0x04
1600	4	RxPDO 映射参数(第一组)		0.04
1601		RxPDO 映射参数(第二组)		
1602		RxPDO 映射参数(第三组)		
1603		RxPDO 映射参数(第四组)		
1604		RxPDO 映射参数(第五组)		适配欧姆龙
1A00		TxPDO 映射参数(第一组)		足的於外外
1A01		TxPDO 映射参数(第二组)		
1A02		TxPDO 映射参数(第三组)		
1A03		TxPDO 映射参数(第四组)		
1A04		TxPDO 映射参数(第五组)		
	0	RxPDO 分配索引数		1
1C12	1	子索引 1		0x1600 (5632)
	0	TxPDO 分配索引数		1
1C13	1	子索引1		0x1A00 (6656)
	0	同步输出参数索引数		32
	1	同步类型		0x0002(0: free run 2: DC SYNC0)
	2	循环时间		(单位,ns)
	4	支持同步类型		0x0005(5)
1C32	5	最小的周期时间		0x0003D090(250000)
	6	计算与复制时间		0x00001388(5000)
	8	获取同步时间		0x0000(0)
	9	延迟时间		0x00000000(0)
	А	同步 0 循环时间		0x00989680(10000000)
	В	同步事件丢失		0x0000(0)
索引	子索引	名称	数据类型	出厂设定值
	0	同步输入参数索引数		32
	1	同步类型		Ox0002 (0: free run
				2: DC SYNC0)
1C33	2	循环时间		(单位,ns)
	4	支持同步类型		0x0005(5)
	5	最小的周期时间		0x0003D090(250000)
	6	计算与复制时间		0x0000000(0)

SV-J3 系列总线伺服产品中文操作手册

		•	
	8	获取同步时间	0x0000(0)
	9	延迟时间	0x00000000(0)
	Α	同步 0 循环时间	0x00989680(10000000)
	В	同步事件丢失	0x0000(0)
	С	循环时间最小	0x0000(0)
	20	同步错误	FALSE

9.2 2100H 对象组一览表

2100h 组:基本设置

2100	11 21.4	学 中 以 自						
索引	子索引	名称	单位	数据类型	数据范围	读写属性	操作模式	PDO 可映 射
2100h	00h	基本设置	-	-	-	-	-	-
2100h	01h	电机旋转正方向定义	1	U16	0-1	运行 设定	ALL	NO
2100h	02h	控制模式选择	1	U16	0-7	停机 设定	ALL	NO
2100h	03h	实时自调整模式	1	U16	0-3	运行 设定	ALL	NO
2100h	04h	刚性等级设定	1	U16	0-31	运行 设定	ALL	NO
2100h	05h	惯量比	0.01	U16	0-6000	运行 设定	ALL	NO
2100h	06h	位置指令来源	1	U16	0-3	停机 设定	ALL	NO
2100h	08h	脉冲串形态	1	U16	0-5	停机设定	csp pp hm	NO
2100h	09h	电机一圈所需单位指令数(32 位)	1Unit	U32	0-1073741824	运行 设定	csp pp hm	NO
2100h	0Bh	第 1 电子齿轮分子(32 位)	1	U32	0-1073741824	运行设定	csp pp hm	NO
2100h	0Dh	电子齿轮分母(32 位)	1	U32	1-1073741824	运行 设定	csp pp hm	NO
2100h	0Fh	电机一圈输出脉冲数(32 位)	1PPR	U32	16-1073741824	停机设定	csp pp hm	NO
2100h	11h	脉冲输出正方向定义	1	U16	0-1	停机 设定	ALL	NO
2100h	12h	脉冲输出 OZ 极性	1	U16	0-3	停机设定	csp pp hm	NO
2100h	13h	脉冲输出功能选择	1	U16	0-3	停机 设定	csp pp hm	NO
2100h	14h	位置偏差过大阈值(32 位)	1P	U32	1-1073741824	运行	ALL	NO

r								
						设定		
2100h	16h	制动电阻设置	1	U16	0-1	运行	ALL	NO
						设定		
2100h	17h	外置电阻功率容量	1W	U16	1-65535	运行	ALL	NO
210011	1111	71日で四の十分里	100	010	1-03535	设定	ALL	NO
2100	1.01		10		1 1000	运行		NO
2100h	18h	外置电阻阻值	1Ω	U16	1-1000	设定	ALL	NO
						运行		
2100h	19h	外置电阻发热时间常数	0.1s	U16	1-30000	设定	ALL	NO
						运行		
2100h	1Ah	制动电压点	1	U16	0-65535	设定	ALL	NO
						72.72	csp	
2100h	1Bh	位置步进量设定	1	116	-9999-9999	运行	рр	NO
210011	IDII	位目グ処里仪だ	1	110	-3333-3333	设定	hm	NO
0.4.001						停机	csp	
2100h	1Ch	高速脉冲串形态	1	U16	0-5	设定	pp	NO
							hm	
2100	1Dh	模数模式低 32 位	1P	U32	0~ 4294967295	停机	csp	NO
2100	1511	IXXIX JUM 92 III	-1	002	0 123 1301 233	设定	СЭР	
2100	1Fh	模数模式高 32 位	1P	U32	0~ 4294967295	停机	ccn	NO
2100	TLU	侯奴悮八 局 32 世	119	032	U~ 4294967295	设定	csp	INU

2101h 组:增益调整

		1 THE NO. 1 E						
索引	子索	名称	单位	数据	数据范围	读写	操作	PDO
糸刀	引	日が	+位	类型	—————————————————————————————————————	属性	模式	可映射
2101h	00h	增益调整	-	-	-	-	-	-
						\- \c	csp	
2101h	01h	位置环增益 1	0.1/s	U16	10-20000	运行	рр	NO
						设定	hm	
							csp	
						\- \c	рр	
2101h	02h	速度环增益 1	0.1HZ	U16	10-20000	运行	hm	NO
						设定	CSV	
							pv	
							csp	
						\- \c	рр	
2101h	03h	速度环积分时间 1	0.01ms	U16	15-51200	运行	hm	NO
						设定	CSV	
							pν	
21011	0.41	*************************************		1116	0.15	运行		NO
2101h	04h	速度检测滤波 1	1	U16	0-15	设定	ALL	NO
21011	0.51	******* A \\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	0.01	1116	0.10000	运行		NO
2101h	05h	转矩指令滤波 1	0.01ms	U16	0-10000	设定	ALL	NO

2101h	06h	位置环增益 2	0.1/s	U16	10-20000	运行设定	csp pp hm	ОИ
2101h	07h	速度环增益 2	0.1HZ	U16	10-20000	运行设定	csp pp hm csv pv	NO
2101h	08h	速度环积分时间 2	0.01ms	U16	15-51200	运行设定	csp pp hm csv pv	NO
2101h	09h	速度检测滤波 2	1	U16	0-15	运行 设定	ALL	NO
2101h	0Ah	转矩指令滤波 2	0.01ms	U16	0-10000	运行 设定	ALL	NO
2101h	0Bh	速度调节器 PDFF 系数	0.1%	U16	0-1000	运行设定	csp pp hm csv pv	NO
2101h	0Ch	速度前馈控制选择	1	U16	0-1	停机设定	csp pp hm	NO
2101h	0Dh	速度前馈增益	0.1%	U16	0-1500	运行 设定	csp pp hm	NO
2101h	0Eh	速度前馈滤波时间	0.01ms	U16	0-6400	运行设定	csp pp hm	NO
2101h	0Fh	转矩前馈选择	1	U16	0-2	停机 设定	csp pp hm csv pv	NO
2101h	10h	转矩前馈增益	0.1%	U16	0-1000	运行设定	csp pp hm csv	NO
2101h	11h	转矩前馈滤波时间	0.01ms	U16	0-6400	运行设定	csp pp hm	NO

				1		1		
							CSV	
							pv csp	
							рр	
2101h	12h	DI 功能 GAIN-SWITCH 切换动作选择	1	U16	0-1	运行	hm	NO
						设定	CSV	
							pv	
							csp	
						:=4=	рр	
2101h	13h	位置控制切换模式	1	U16	0-10	运行 设定	hm	NO
						以足	CSV	
							pv	
							csp	
						运行	рр	
2101h	14h	位置控制切换延时	0.1ms	U16	0-1000	设定	hm	NO
							CSV	
							pv	
							csp	
0101	4.51				0.0000	运行	pp	
2101h	15h	位置控制切换等级	1	U16	0-20000	设定	hm	NO
				CSV				
							pv csp	
							pp	
2101h	16h	位置控制切换回滞	1	U16	0-20000	运行	hm	NO
210111	1011		_	010	0 20000	设定	CSV	110
							pv	
							csp	
							рр	
2101h	17h	位置增益切换时间	0.1ms	U16	0-10000	运行	hm	NO
						设定	CSV	
							pv	
2101h	18h	速度控制切换模式	1	U16	0-5	运行	CSV	NO
210111	1011	述及控制切换模式 	1	010	0-5	设定	pv	INO
2101h	19h	速度控制切换延时	0.1ms	U16	0-1000	运行	CSV	NO
210111	1311	を 反 は いっかい 大 だ ト 3	0.11113	010	0-1000	设定	pv	NO
2101h	1Ah	速度控制切换等级	1	U16	0-20000	运行	CSV	NO
	27.11.	ZEIZIII-18 7317 (37)7	_	010	2 2000	设定	pv	
2101h	1Bh	速度控制切换回滞	1	U16	0-20000	运行	CSV	NO
					-	设定	pv	
2101h	1Ch	转矩控制切换模式	1	U16	0-3	运行	cst	NO
						设定	pt	
2101h	1Dh	转矩控制切换延时	0.1ms	U16	0-1000	运行	cst	NO
						设定	pt	

2101h	1Eh	转矩控制切换等级	1	U16	0-20000	运行 设定	cst pt	NO
2101h	1Fh	转矩控制切换回滞	1	U16	0-20000	运行 设定	cst pt	NO
2101h	20h	观测器启用	1	U16	0-2	停机 设定	ALL	NO
2101h	21h	观测器截止频率	1Hz	U16	0-500	停机 设定	ALL	NO
2101h	22h	观测器相位补偿时间	0.01ms	U16	0-10000	运行 设定	ALL	NO
2101h	23h	观测器惯量系数	1	U16	0-10000	停机 设定	ALL	NO

2102h 组:振动抑制

索引	子索引	名称	单位	数据类型	数据范围	读写属性	操作模式	PDO 可映 射
2102h	00h	振动抑制	-	-	-	-	-	-
2102h	01h	位置指令平滑滤波	0.1ms	U16	0-65535	运行 设定	csp pp hm	NO
2102h	02h	位置指令 FIR 滤波	0.1ms	U16	0-1280	运行 设定	csp pp hm	NO
2102h	03h	自适应滤波器模式	1	U16	0-4	运行 设定	ALL	NO
2102h	04h	自适应滤波负载模式	1	U16	0-1	运行 设定	ALL	NO
2102h	05h	第 1 陷波器频率(手动)	1Hz	U16	50-5000	运行 设定	ALL	NO
2102h	06h	第1陷波器宽度	1	U16	0-12	运行 设定	ALL	NO
2102h	07h	第1陷波器深度	1	U16	0-99	运行 设定	ALL	NO
2102h	08h	第 2 陷波器频率(手动)	1Hz	U16	50-5000	运行 设定	ALL	NO
2102h	09h	第 2 陷波器宽度	1	U16	0-12	运行 设定	ALL	NO
2102h	0Ah	第2陷波器深度	1	U16	0-99	运行 设定	ALL	NO
2102h	0Bh	第 3 陷波器频率	1Hz	U16	50-5000	运行 设定	ALL	NO
2102h	0Ch	第 3 陷波器宽度	1	U16	0-12	运行	ALL	NO

					T			
						设定		
2102h	0Dh	第 3 陷波器深度	1	U16	0-99	运行 设定	ALL	NO
2102h	0Eh	第 4 陷波器频率	1Hz	U16	50-5000	运行 设定	ALL	NO
2102h	0Fh	第 4 陷波器宽度	1	U16	0-12	运行 设定	ALL	NO
2102h	10h	第 4 陷波器深度	1	U16	0-99	运行 设定	ALL	NO
2102h	14h	位置指令 FIR 滤波 2	0.1ms	U16	0-1280	运行设定	csp pp hm	NO
2102h	15h	第1减振频率	0.1Hz	U16	0-1000	运行 设定	csp pp hm csv pv	NO
2102h	16h	第 1 减振滤波设定	0.1	U16	0-10	运行设定	csp pp hm csv	NO
2102h	17h	第2减振频率	0.1Hz	U16	0-1000	运行设定	csp pp hm csv	NO
2102h	18h	第 2 减振滤波设定	0.1	U16	0-10	运行 设定	csp pp hm csv pv	NO
2102h	20h	共振点 1 频率	1Hz	U16	0-5000	显示 参数	ALL	NO
2102h	21h	共振点 1 频宽	1	U16	0-20	显示 参数	ALL	NO
2102h	22h	共振点 1 幅度	1	U16	0-1000	显示参数	ALL	NO
2102h	23h	共振点 2 频率	1Hz	U16	0-5000	显示参数	ALL	NO
2102h	24h	共振点 2 频宽	1	U16	0-20	显示参数	ALL	NO
2102h	25h	共振点2幅度	1	U16	0-1000	显示参数	ALL	NO

2103h 组:速度转矩控制

2103	Ⅱ 组.坯	以度转矩控制						
索引	子索引	名称	单位	数据类型	数据范围	读写属性	操作模式	PDO 可映 射
2103h	00h	速度转矩控制	-	-	-	-	-	-
2103h	01h	速度指令来源	1	U16	0-6	停机 设定	csv pv	NO
2103h	04h	速度指令设定值	1rpm	l16	-9000-9000	运行 设定	csv pv	NO
2103h	05h	点动速度设定值	1rpm	U16	0-3000	运行 设定	csv pv	NO
2103h	09h	转矩限制来源	1	U16	0-3	运行 设定	csp pp hm csv pv	NO
2103h	0Ah	正转内部转矩限制	0.1%	U16	0-5000	运行 设定	csp pp hm csv pv	NO
2103h	0Bh	反转内部转矩限制	0.1%	U16	0-5000	运行设定	csp pp hm csv	NO
2103h	0Ch	正转侧外部转矩限制	0.1%	U16	0-5000	运行设定	csp pp hm csv	NO
2103h	0Dh	反转侧外部转矩限制	0.1%	U16	0-5000	运行 设定	csp pp hm csv	NO
2103h	0Fh	加速时间 1	1ms	U16	0-65535	运行 设定	csv pv cst pt	NO
2103h	10h	减速时间 1	1ms	U16	0-65535	运行 设定	csv pv	NO

	1		1	1		1	1	
							cst pt	
2103h	11h	加速时间 2	1ms	U16	0-65535	运行 设定	csv	NO
2103h	12h	减速时间 2	1ms	U16	0-65535	运行设定	CSV	NO
2103h	14h	零速钳位功能	1	U16	0-2	运行设定	csv pv cst	NO
2103h	15h	零速钳位阈值	1rpm	U16	0-1000	运行设定	pt csv pv cst pt	NO
2103h	17h	转矩指令来源	1	U16	0-4	停机 设定	cst pt	NO
2103h	1Ah	转矩指令键盘设定值	0.1%	116	-3000-3000	运行 设定	cst pt	NO
2103h	1Bh	转矩控制时速度限制来源选择	1	U16	0-1	运行 设定	cst pt	NO
2103h	1Ch	内部正速度限制	1	U16	0-9000	运行 设定	cst pt	NO
2103h	1Dh	内部负速度限制	1	U16	0-9000	运行 设定	cst pt	NO
2103h	1Eh	硬限位转矩限制	0.1%	U16	0-4000	运行 设定	ALL	NO
2103h	1Fh	硬限位转矩限制检测时间	1	U16	0-2000	运行 设定	ALL	NO
2103h	20h	速度指令序号选择方式	1	U16	0-1	停机 设定	csv pv	NO
2103h	21h	第 1~第 8 段速度指令使用的加速时间 序号	1	U16	0-1	运行 设定	csv pv	NO
2103h	22h	第 1~第 8 段速度指令使用的减速时间 序号	1	U16	0-1	运行 设定	csv pv	NO
2103h	23h	第 9~第 16 段速度指令使用的加速时 间序号	1	U16	0-1	运行 设定	csv pv	NO
2103h	24h	第 9~第 16 段速度指令使用的减速时 间序号	1	U16	0-1	运行 设定	csv pv	NO
2103h	25h	第1段速度	1rpm	116	-9000-9000	运行 设定	csv pv	NO
2103h	26h	第2段速度	1rpm	116	-9000-9000	运行 设定	csv pv	NO
2103h	27h	第 3 段速度	1rpm	116	-9000-9000	运行 设定	csv pv	NO

2103h	28h	第 4 段速度	1rpm	116	-9000-9000	运行 设定	csv	NO
						运行	CSV	
2103h	29h	第 5 段速度	1rpm	116	-9000-9000	设定	pv	NO
						运行	CSV	
2103h	2Ah	第6段速度	1rpm	116	-9000-9000	设定	pv	NO
2102	201	かっていまけ		11.0	0000 0000	运行	CSV	NO
2103h	2Bh	第7段速度	1rpm	I16	-9000-9000	设定	pv	NO
2102h	2Ch	笠 0 60油床	1 5000	116	0000 0000	运行	CSV	NO
2103h	2Ch	第 8 段速度	1rpm	I16	-9000-9000	设定	pv	NO
2103h	2Dh	第 9 段速度	1rpm	116	-9000-9000	运行	CSV	NO
210311	2011	为3+X还反	пріп	110	-9000-9000	设定	pv	NO
2103h	2Eh	第 10 段速度	1rpm	116	-9000-9000	运行	CSV	NO
210311	ZLII	73 TO TAKEIX	110111	110	3000 3000	设定	pv	110
2103h	2Fh	第 11 段速度	1rpm	116	-9000-9000	运行	CSV	NO
		7.5 == 1,X,G,Z				设定	pv	
2103h	30h	第 12 段速度	1rpm	116	-9000-9000	运行	CSV	NO
			, ·			设定	pv	
2103h	31h	第 13 段速度	1rpm	116	-9000-9000	运行	CSV	NO
			'			设定	pv	
2103h	32h	第 14 段速度	1rpm	116	-9000-9000	运行	CSV	NO
			·			设定	pv	
2103h	33h	第 15 段速度	1rpm	116	-9000-9000	运行	CSV	NO
			•			设定	pv	
2103h	34h	第 16 段速度	1rpm	116	-9000-9000	运行	CSV	NO
						设定	pv	

2104h 组:数字输入输出

索引	子索引	名称	单位	数据类型	数据范围	读写属性	操作模式	PDO 可映 射
2104h	00h	数字输入输出	ı	-	-	-	1	-
2104h	01h	普通 DI 滤波选择	1us	U16	0-10000	运行 设定	ALL	NO
2104h	02h	DI1 端子功能选择	1	U16	0-63	停机 设定	ALL	NO
2104h	03h	DI2 端子功能选择	1	U16	0-63	停机 设定	ALL	NO
2104h	04h	DI3 端子功能选择	1	U16	0-63	停机 设定	ALL	NO
2104h	05h	DI4 端子功能选择	1	U16	0-63	停机 设定	ALL	NO

2104h	06h	DI5 端子功能选择	1	U16	0-63	停机 设定	ALL	NO
2104h	07h	DI6 端子功能选择	1	U16	0-63	停机 设定	ALL	NO
2104h	08h	DI7 端子功能选择	1	U16	0-63	停机 设定	ALL	NO
2104h	09h	DI8 端子功能选择	1	U16	0-63	停机 设定	ALL	NO
2104h	0Ah	DI9 端子功能选择	1	U16	0-63	停机 设定	ALL	NO
2104h	0Ch	DI1 端子逻辑选择	1	U16	0-1	停机 设定	ALL	NO
2104h	0Dh	DI2 端子逻辑选择	1	U16	0-1	停机 设定	ALL	NO
2104h	0Eh	DI3 端子逻辑选择	1	U16	0-1	停机 设定	ALL	NO
2104h	0Fh	DI4 端子逻辑选择	1	U16	0-1	停机 设定	ALL	NO
2104h	10h	DI5 端子逻辑选择	1	U16	0-1	停机 设定	ALL	NO
2104h	11h	DI6 端子逻辑选择	1	U16	0-1	停机 设定	ALL	NO
2104h	12h	DI7 端子逻辑选择	1	U16	0-1	停机 设定	ALL	NO
2104h	13h	DI8 端子逻辑选择	1	U16	0-1	停机 设定	ALL	NO
2104h	14h	DI9 端子逻辑选择	1	U16	0-1	停机 设定	ALL	NO
2104h	16h	DO1 端子功能选择	1	U16	0-31	停机 设定	ALL	NO
2104h	17h	DO2 端子功能选择	1	U16	0-31	停机 设定	ALL	NO
2104h	18h	DO3 端子功能选择	1	U16	0-31	停机 设定	ALL	NO
2104h	19h	DO4 端子功能选择	1	U16	0-31	停机 设定	ALL	NO
2104h	1Ah	DO5 端子功能选择	1	U16	0-31	停机 设定	ALL	NO
2104h	1Bh	DO6 端子功能选择	1	U16	0-31	停机 设定	ALL	NO
2104h	1Ch	DO7 端子功能选择	1	U16	0-31	停机 设定	ALL	NO
2104h	1Dh	DO8 端子功能选择	1	U16	0-31	停机	ALL	NO

								1
						设定		
2104h	1Eh	DO9 端子功能选择	1	U16	0-31	停机 设定	ALL	NO
2104h	20h	DO1 端子逻辑电平选择	1	U16	0-1	停机 设定	ALL	NO
2104h	21h	DO2 端子逻辑电平选择	1	U16	0-1	停机 设定	ALL	NO
2104h	22h	DO3 端子逻辑电平选择	1	U16	0-1	停机 设定	ALL	NO
2104h	23h	DO4 端子逻辑电平选择	1	U16	0-1	停机 设定	ALL	NO
2104h	24h	DO5 端子逻辑电平选择	1	U16	0-1	停机 设定	ALL	NO
2104h	25h	DO6 端子逻辑电平选择	1	U16	0-1	停机 设定	ALL	NO
2104h	26h	DO7 端子逻辑电平选择	1	U16	0-1	停机 设定	ALL	NO
2104h	27h	DO8 端子逻辑电平选择	1	U16	0-1	停机 设定	ALL	NO
2104h	28h	DO9 端子逻辑电平选择	1	U16	0-1	停机 设定	ALL	NO
2104h	2Ah	FunINL 信号未分配的状态(HEX)	1	U16	0-65535	运行 设定	ALL	NO
2104h	2Bh	FunINH 信号未分配的状态(HEX)	1	U16	0-65535	运行 设定	ALL	NO
2104h	2Ch	电机旋转信号速度门限值	1rpm	U16	0-1000	运行 设定	ALL	NO
2104h	2Dh	速度一致信号宽度	1rpm	U16	10-1000	运行 设定	csv pv	NO
2104h	2Eh	速度到达指定值	1rpm	U16	10-9000	运行 设定	ALL	NO
2104h	30h	定位完成范围	1P	U16	1-65535	运行 设定	csp pp hm	NO
2104h	31h	定位完成输出设定	1	U16	0-7	运行设定	csp pp hm	NO
2104h	32h	定位完成保持时间	1ms	U16	1-65535	运行 设定	csp pp hm	NO
2104h	33h	定位接近范围	1P	U16	1-65535	运行 设定	csp pp hm	NO
2104h	34h	零速时制动器动作后伺服 OFF 延迟时	1ms	U16	0-9999	运行	ALL	NO

		间				设定		
2104h	35h	运转中制动器动作时的速度设定	1rpm	U16	0-3000	运行 设定	ALL	NO
2104h	36h	运转中制动器动作时的等待时间	1ms	U16	0-9999	运行 设定	ALL	NO
2104h	37h	Z 脉冲 OC 输出使能	1	U16	0-3	运行 设定	ALL	NO
2104h	38h	转矩到达指定值	0.1%	U16	0-3000	运行 设定	ALL	NO
2104h	39h	转矩到达检测宽度	0.1%	U16	0-3000	运行 设定	ALL	NO
2104h	3Ah	Z 脉冲宽度调整	1	U16	0-100	运行 设定	ALL	NO
2104h	3Bh	零速信号输出门限值	1rpm	U16	0-1000	运行 设定	ALL	NO

2106h 组:扩展参数

索引	子索引	名称	单位	数据类型	数据范围	读写属性	操作模式	PDO 可映 射
2106h	00h	扩展参数(保护、辅助功能)	-	-	-	-	-	-
2106h	01h	第 2 电子齿轮分子(32 位)	1	U32	0-1073741824	运行设定	csp pp hm	NO
2106h	03h	第 3 电子齿轮分子(32 位)	1	U32	0-1073741824	运行设定	csp pp hm	NO
2106h	05h	第 4 电子齿轮分子(32 位)	1	U32	0-1073741824	运行设定	csp pp hm	NO
2106h	07h	位置偏差清除功能	1	U16	0-3	运行设定	csp pp hm	NO
2106h	0Ah	电子齿轮比切换延时设置	1	U16	0-1	停机设定	csp pp hm	NO
2106h	0Bh	势能负载转矩补偿值	1%	116	-100-100	运行设定	csp pp hm csv pv	NO
2106h	0Ch	P06.10 及摩擦补偿存储选项	1	U16	0-2	运行 设定	csp	NO

							hm	
							CSV	
							pv	
							csp	
2422						运行	pp	
2106h	0Dh	正转摩擦转矩补偿	0.1%	116	-3000-3000	设定	hm	NO
							CSV	
							pv	
							csp	
2106h	056	 反转摩擦转矩补偿	0.10/	11.0	2000 2000	运行	pp	NO
210611	0Eh	以 牧 摩 捺 转 起 作 云	0.1%	116	-3000-3000	设定	hm	NO
							CSV	
							pv	
							csp	
2106h	0Fh	粘滞摩擦补偿	0.1%	116	-3000-3000	运行	pp hm	NO
210011	0111	和/市/手)示书 区	0.170	110	-3000-3000	设定	CSV	NO
							pv	
							csp	
							рр	
2106h	10h	摩擦补偿时间常数	0.1ms	U16	0-10000	运行	hm	NO
210011	1011	HWII IZELEIIIXX	0.1113	010	0 10000	设定	CSV	110
							pv	
							csp	
							рр	
2106h	11h	 摩擦补偿低速区间	1rpm	U16	0-500	运行	hm	NO
			·			设定	CSV	
							pv	
							csp	
						4-1-	рр	
2106h	14h	 参数识别速度值	1	U16	100-1000	停机	hm	NO
						设定	CSV	
							pv	
							csp	
						/ ≥ ±5	рр	
2106h	15h	参数识别加速时间	1	U16	50-10000	停机	hm	NO
						设定	CSV	
							pv	
							csp	
						/ 台 +n	рр	
2106h	16h	参数识别减速时间	1	U16	50-10000	停机	hm	NO
						设定	CSV	
							pv	
2106h	17h	参数识别模式	1	U16	0-1	停机	csp	NO

						设定	рр	
							hm	
							CSV	
							pv	
2106h	18h	初始角度辨识电流限制	0.1%	U16	0-2000	停机 设定	ALL	NO
2106h	19h	瞬间停电保护	1	U16	0-2	运行 设定	ALL	NO
2106h	1Ah	瞬间停电减速时间	1ms	U16	0-10000	运行 设定	ALL	NO
2106h	1Bh	伺服 OFF 停机方式	1	U16	0-2	停机 设定	ALL	NO
2106h	1Ch	第二类故障停机方式选择	1	U16	0-2	停机 设定	ALL	NO
2106h	1Dh	超程输入设定	1	U16	0-1	停机 设定	ALL	NO
2106h	1Eh	超程时的停止方式	1	U16	0-2	停机 设定	ALL	NO
2106h	1Fh	电源输入缺相保护选择	1	U16	0-1	运行 设定	ALL	NO
2106h	20h	电源输出缺相保护选择	1	U16	0-1	运行 设定	ALL	NO
2106h	21h	紧急停止转矩	0.1%	U16	0-5000	运行 设定	ALL	NO
2106h	22h	飞车保护功能	1	U16	0-1	运行 设定	ALL	NO
2106h	23h	过载警告值	1%	U16	1-100	运行 设定	ALL	NO
2106h	24h	电机过载保护系数	1%	U16	10-300	运行 设定	ALL	NO
2106h	25h	欠压保护点	1%	U16	50-130	运行 设定	ALL	NO
2106h	26h	过速故障点	1%	U16	50-120	运行 设定	ALL	NO
2106h	27h	脉冲输入最大频率	1KHZ	U16	10-9000	停机 设定	csp pp hm	NO
2106h	28h	对地短路检测保护选择	1	U16	0-1	运行 设定	ALL	NO
2106h	29h	编码器干扰检测延时	1	U16	0-99	运行 设定	ALL	NO
2106h	2Ah	脉冲输入滤波设定	1	U16	0-500	停机设定	csp pp hm	NO

2106h	2Bh	脉冲禁止输入设定	1	U16	0-3	停机设定	csp pp hm	NO
2106h	2Ch	偏差清零输入设定	1	U16	0-1	停机 设定	csp pp hm	NO
2106h	2Dh	高速 DI 滤波设定	1us	U16	0-10000	停机 设定	ALL	NO
2106h	2Eh	速度偏差过大阈值	1rpm	U16	0-10000	运行设定	csp pp hm csv pv	NO
2106h	2Fh	转矩饱和超时时长	1ms	U16	0-30000	运行 设定	ALL	NO
2106h	30h	绝对值系统设定	1	U16	0-19	运行 设定	ALL	NO
2106h	31h	编码器电池低压阈值	0.1V	U16	0-33	运行 设定	ALL	NO
2106h	32h	高速脉冲输入滤波	1	U16	0-500	停机 设定	ALL	NO

2107h 组:辅助功能

		HH471~71日C						
索引	子索引	名称	单位	数据类型	数据范围	读写属性	操作模式	PDO 可映 射
2107h	00h	辅助功能	-	-	-	-	-	-
2107h	01h	面板显示选项	1	U16	0-65535	运行 设定	ALL	NO
2107h	02h	面板监控参数设置 1	1	U16	0-69	运行 设定	ALL	NO
2107h	03h	面板监控参数设置 2	1	U16	0-69	运行 设定	ALL	NO
2107h	04h	面板监控参数设置 3	1	U16	0-69	运行 设定	ALL	NO
2107h	05h	面板监控参数设置 4	1	U16	0-69	运行 设定	ALL	NO
2107h	06h	面板监控参数设置 5	1	U16	0-69	运行 设定	ALL	NO
2107h	09h	功能选项 1	1	U16	0-65535	运行 设定	ALL	NO
2107h	0Ah	功能选项 2	1	U16	0-65535	运行 设定	ALL	NO

2107h	0Bh	用户密码	1	U16	0-65535	运行 设定	ALL	NO
2107h	0Ch	断电及时存储功能	1	U16	0-1	运行 设定	ALL	NO
2107h	0Dh	用户加密锁屏时间	1分钟	U16	1-30	运行 设定	ALL	NO
2107h	0Fh	快速减速时间	1ms	U16	0-9999	停机 设定	ALL	NO
2107h	11h	功能选项 3	1	U16	0-65535	停机 设定	ALL	NO
2107h	12h	电机一圈最大等分数	1	U16	0-99	运行 设定	csp pp hm	NO
2107h	14h	功能选项 5	1	U16	0-65535	停机 设定	ALL	NO
2107h	15h	功能选项 6	1	U16	0-65535	停机 设定	ALL	NO
2107h	16h	功能选项 7	1	U16	0-65535	运行 设定	ALL	NO
2107h	17h	功能选项 8	1	U16	0-65535	运行 设定	ALL	NO
2107h	18h	故障复位时机	1	U16	0-1	运行 设定	ALL	NO
2107h	19h	正向软限位(32 位)	1	132	-2147483648- 2147483647	停机 设定	ALL	NO
2107h	1Bh	负向软限位(32 位)	1	132	-2147483648- 2147483647	停机 设定	ALL	NO
2107h	1Dh	回原完成信号保持时间	1ms	U16	0-65535	运行 设定	hm	NO

2108h 组:内部位置指令

索引	子索引	名称	单位	数据类型	数据范围	读写属性	操作模式	PDO 可映 射
2108h	00h	内部位置指令	-	-	-	-	-	-
2108h	01h	多段预置位置指令执行方式	1	U16	0-5	停机设定	csp pp hm	NO
2108h	02h	起始段序号	1	U16	1-16	运行 设定	csp pp hm	NO

				,				
2108h	03h	终点段序号	1	U16	1-16	运行设定	csp pp hm	NO
2108h	04h	暂停再启动之后剩余段数处理方式	1	U16	0-1	运行设定	csp pp hm	NO
2108h	05h	位置指令类型	1	U16	0-1	停机设定	csp pp hm	NO
2108h	06h	等待时间的单位	1	U16	0-1	运行设定	csp pp hm	NO
2108h	07h	第 1 段位移量(32 位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO
2108h	09h	第1段最大速度	1rpm	U16	1-9000	运行设定	csp pp hm	NO
2108h	0Ah	第1段加减速时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	0Bh	第 1 段完成之后等待时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	0Ch	第 2 段位移量(32 位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO
2108h	0Eh	第 2 段最大速度	1rpm	U16	1-9000	运行设定	csp pp hm	NO
2108h	0Fh	第 2 段加减速时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	10h	第 2 段完成之后等待时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	11h	第 3 段位移量(32 位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO
2108h	13h	第 3 段最大速度	1rpm	U16	1-9000	运行设定	csp pp hm	NO
2108h	14h	第3段加减速时间	1ms	U16	0-65535	运行 设定	csp pp	NO

							hm	
						运行	csp	
2108h	15h	第3段完成之后等待时间	1ms	U16	0-65535	设定	рр	NO
						及足	hm	
							csp	
2108h	16h	第 4 段位移量(32 位)	1	132	-1073741824-	运行	рр	NO
		35	_		1073741824	设定	hm	
2100	101	然人 印目 1 注应		1116	1 0000	运行	csp	
2108h	18h	第 4 段最大速度	1rpm	U16	1-9000	设定	pp	NO
							hm	
						运行	csp	
2108h	19h	第 4 段加减速时间	1ms	U16	0-65535	设定	рр	NO
						IX.AL	hm	
						\- \/-	csp	
2108h	1Ah	第 4 段完成之后等待时间	1ms	U16	0-65535	运行	рр	NO
						设定	hm	
							csp	
2108h	1Bh	 第 5 段位移量(32 位)	1	132	-1073741824-	运行	рр	NO
210011	15	7. 3 (ALD = (32 la)	_	102	1073741824	设定	hm	110
2422	4.5.1	W - CI - L L L				运行	csp	
2108h	1Dh	第 5 段最大速度 	1rpm	U16	1-9000	设定	pp	NO
							hm	
						运行	csp	
2108h	1Eh	第 5 段加减速时间	1ms	U16	0-65535	设定	рр	NO
						IX.C	hm	
						运行	csp	
2108h	1Fh	第 5 段完成之后等待时间	1ms	U16	0-65535		рр	NO
						设定	hm	
							csp	
2108h	20h	第 6 段位移量(32 位)	1	132	-1073741824-	运行	рр	NO
			_		1073741824	设定	hm	
2108h	22h	第 6 段最大速度	1rnm	U16	1-9000	运行	csp	NO
210011	2211	第 0 权取八述及 	1rpm	016	1-9000	设定	pp	NO
							hm	
						运行	csp	
2108h	23h	第6段加减速时间	1ms	U16	0-65535	设定	pp	NO
							hm	
						运行	csp	
2108h	24h	第6段完成之后等待时间	1ms	U16	0-65535	设定	рр	NO
						以 上	hm	
					107074100	\	csp	
2108h	25h	第7段位移量(32位)	1	132	-1073741824-	运行	рр	NO
					1073741824	设定	hm	
2108h	27h	第7段最大速度	1rpm	U16	1-9000	运行	csp	NO
		71 1 TAHA/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· P · · ·	710	1 3000	~:13	227	.,,

						设定	рр	
2108h	28h	第7段加减速时间	1ms	U16	0-65535	运行设定	csp pp	NO
2108h	29h	第7段完成之后等待时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	2Ah	第8段位移量(32位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO
2108h	2Ch	第8段最大速度	1rpm	U16	1-9000	运行 设定	csp pp hm	NO
2108h	2Dh	第8段加减速时间	1ms	U16	0-65535	运行 设定	csp pp hm	NO
2108h	2Eh	第 8 段完成之后等待时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	2Fh	第 9 段位移量(32 位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO
2108h	31h	第 9 段最大速度	1rpm	U16	1-9000	运行设定	csp pp hm	NO
2108h	32h	第 9 段加减速时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	33h	第 9 段完成之后等待时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	34h	第 10 段位移量(32 位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO
2108h	36h	第 10 段最大速度	1rpm	U16	1-9000	运行 设定	csp pp hm	NO
2108h	37h	第 10 段加减速时间	1ms	U16	0-65535	运行 设定	csp pp hm	NO
2108h	38h	第 10 段完成之后等待时间	1ms	U16	0-65535	运行设定	csp pp hm	NO

2108h	39h	第 11 段位移量(32 位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO
2108h	3Bh	第 11 段最大速度	1rpm	U16	1-9000	运行 设定	csp pp hm	NO
2108h	3Ch	第 11 段加减速时间	1ms	U16	0-65535	运行 设定	csp pp hm	NO
2108h	3Dh	第 11 段完成之后等待时间	1ms	U16	0-65535	运行 设定	csp pp hm	NO
2108h	3Eh	第 12 段位移量(32 位)	1	132	-1073741824- 1073741824	运行 设定	csp pp hm	NO
2108h	40h	第 12 段最大速度	1rpm	U16	1-9000	运行设定	csp pp hm	NO
2108h	41h	第 12 段加减速时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	42h	第 12 段完成之后等待时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	43h	第 13 段位移量(32 位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO
2108h	45h	第 13 段最大速度	1rpm	U16	1-9000	运行设定	csp pp hm	NO
2108h	46h	第 13 段加减速时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	47h	第 13 段完成之后等待时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	48h	第 14 段位移量(32 位)	1	132	-1073741824- 1073741824	运行 设定	csp pp hm	NO
2108h	4Ah	第 14 段最大速度	1rpm	U16	1-9000	运行 设定	csp pp hm	NO
2108h	4Bh	第 14 段加减速时间	1ms	U16	0-65535	运行 设定	csp pp	NO

						1	1	
							hm	
2108h	4Ch	第 14 段完成之后等待时间	1ms	U16	0-65535	运行 设定	csp pp hm	NO
2108h	4Dh	第 15 段位移量(32 位)	1	132	-1073741824- 1073741824	运行 设定	csp pp hm	NO
2108h	4Fh	第 15 段最大速度	1rpm	U16	1-9000	运行设定	csp pp hm	NO
2108h	50h	第 15 段加减速时间	1ms	U16	0-65535	运行设定	csp pp hm	NO
2108h	51h	第 15 段完成之后等待时间	1ms	U16	0-65535	运行 设定	csp pp hm	NO
2108h	52h	第 16 段位移量(32 位)	1	132	-1073741824- 1073741824	运行 设定	csp pp hm	NO
2108h	54h	第 16 段最大速度	1rpm	U16	1-9000	运行 设定	csp pp hm	NO
2108h	55h	第 16 段加减速时间	1ms	U16	0-65535	运行 设定	csp pp hm	NO
2108h	56h	第 16 段完成之后等待时间	1ms	U16	0-65535	运行 设定	csp pp hm	NO
2108h	57h	位置指令抢断执行设定	1	U16	0-4	停机 设定	csp pp hm	NO
2108h	59h	原点回归启动方式	1	U16	0-4	停机设定	csp pp hm	NO
2108h	5Ah	原点回归模式	1	U16	0-8	停机设定	csp pp hm	NO
2108h	5Bh	原点回归时限位和 Z 信号设定	1	U16	0-5	停机 设定	csp pp hm	NO
						运行	csp	
2108h	5Dh	高速搜索原点的速度	1rpm	U16	1-3000	设定	pp hm	NO

						设定	pp hm	
2108h	5Fh	搜索原点时的加减速时间	1ms	U16	1-10000	运行 设定	csp pp hm	NO
2108h	60h	回原点过程时间限定值	1ms	U16	1-65535	运行设定	csp pp hm	NO
2108h	61h	原点坐标偏移(32 位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO
2108h	63h	机械原点位置偏移量(32 位)	1	132	-1073741824- 1073741824	运行设定	csp pp hm	NO

2109h 组:通信设定

索引	子索引	名称	单位	数据	数据范围	读写属性	操作模式	PDO 可映 射
2109h	00h	通信设定	-	-	-	-	-	-
2109h	01h	伺服轴地址编号	1	U16	1-247	运行 设定	ALL	NO
2109h	02h	Modbus 波特率	1	U16	0-6	运行 设定	ALL	NO
2109h	03h	Modbus 数据格式	1	U16	0-3	运行 设定	ALL	NO
2109h	04h	通信超时	1ms	U16	0-9999	运行 设定	ALL	NO
2109h	05h	通信应答延时	1ms	U16	0-9999	运行 设定	ALL	NO
2109h	06h	通信控制 DI 使能设定 1	1	U16	0-65535	停机 设定	ALL	NO
2109h	07h	通信控制 DI 使能设定 2	1	U16	0-65535	停机 设定	ALL	NO
2109h	08h	通信控制 DI 使能设定 3	1	U16	0-65535	停机 设定	ALL	NO
2109h	09h	通信控制 DI 使能设定 4	1	U16	0-65535	停机 设定	ALL	NO
2109h	0Ah	通信控制 DO 使能设定 1	1	U16	0-65535	停机 设定	ALL	NO
2109h	0Bh	通信控制 DO 使能设定 2	1	U16	0-65535	停机 设定	ALL	NO

2109h	0Ch	通信设定命令值维持时间	1	U16	0-60	运行 设定	ALL	NO
2109h	0Dh	CAN 通信配置 1	1	U16	0-65535	停机 设定	ALL	NO
2109h	0Eh	总线通信配置 1	1	U16	0-65535	停机 设定	ALL	NO
2109h	0Fh	总线通信配置 2	1	U16	0-65535	停机 设定	ALL	NO
2109h	10h	总线通信配置 3	1	U16	0-65535	停机 设定	ALL	NO
2109h	11h	EtherCAT 断线检测	1	l16	-20-20	运行 设定	ALL	NO
2109h	12h	总线通信配置 4	1	U16	0-65535	运行 设定	ALL	NO
2109h	13h	EtherCAT 站号设置	1	U16	0-65535	运行 设定	ALL	NO

2114h 组:键盘和通信操控接口

索引	子索引	名称	单位	数据类型	数据范围	读写属性	操作模式	PDO 可映 射
2114h	00h	键盘和通信操控接口	-	-	-	-	-	-
2114h	01h	键盘 JOG 试运行	1	U16	0-2000	停机 设定	ALL	NO
2114h	02h	故障复位	1	U16	0-9	停机 设定	ALL	NO
2114h	03h	通讯参数写入保存	1	U16	0-65535	运行 设定	ALL	NO
2114h	04h	参数辨识功能	1	U16	0-5	停机 设定	ALL	NO
2114h	06h	模拟输入自动校正	1	U16	0-2	停机 设定	ALL	NO
2114h	07h	系统初始化功能	1	U16	0-99	停机 设定	ALL	NO
2114h	09h	通信操作命令输入	1	U16	0-65535	运行 设定	ALL	NO
2114h	0Ah	通信操作状态输出	1	U16	0-65535	显示参数	ALL	NO
2114h	0Ch	通信选择多段指令序号	1	U16	0-16	运行设定	csp pp hm csv	NO

							pv	
2114h	0Dh	通信启动原点回归	1	U16	0-9	运行设定	csp pp hm	NO

2115h 组:状态参数

2115N 组:									
索引	子索引	名称	单位	数据类型	数据范围	读写属性	操作模式	PDO 可映 射	
2115h	00h	状态参数	-	-	-	-	-	-	
2115h	01h	伺服状态	1	U16	0-65535	显示参数	ALL	NO	
2115h	02h	电机转速反馈	1rpm	116	-9000-9000	显示 参数	ALL	NO	
2115h	04h	速度指令	1rpm	I16	-9000-9000	显示 参数	ALL	NO	
2115h	05h	内部转矩指令(相对于额定转矩)	0.1%	I16	-5000-5000	显示 参数	ALL	NO	
2115h	06h	相电流有效值	0.01A	U16	0-65535	显示 参数	ALL	NO	
2115h	07h	母线电压值	0.1V	U16	0-65535	显示 参数	ALL	NO	
2115h	08h	绝对位置计数器(32 位)	1Unit	132	-1073741824- 1073741824	显示参数	ALL	NO	
2115h	0Ah	电气角度	0.1 度	U16	0-65535	显示 参数	ALL	NO	
2115h	0Bh	机械角度(相对于编码器零点)	0.1 度	U16	0-65535	显示 参数	ALL	NO	
2115h	0Ch	辨识的惯量值	0.01 kg c m²	U16	0-65535	显示 参数	ALL	NO	
2115h	0Dh	输入位置指令对应速度信息	1rpm	I16	-9000-9000	显示 参数	ALL	NO	
2115h	0Eh	位置偏差计数器(32 位)	1P	132	-1073741824- 1073741824	显示 参数	ALL	NO	
2115h	10h	输入指令脉冲计数器(32 位)	1Unit	132	-1073741824- 1073741824	显示 参数	ALL	NO	
2115h	12h	反馈脉冲计数器(32 位)	1P	132	-1073741824- 1073741824	显示参数	ALL	NO	
2115h	14h	位置偏差计数器指令单位(32 位)	1Unit	132	-1073741824- 1073741824	显示参数	ALL	NO	
2115h	16h	数字输入信号监视	1	U16	0-511	显示参数	ALL	NO	

2115h	18h	数字输出信号监视	1	U16	0-511	显示参数	ALL	NO
2115h	19h	编码器状态	1	U16	0-65535	显示参数	ALL	NO
2115h	1Ah	总上电时间(32 位)	0.1s	U32	0-2147483647	显示参数	ALL	NO
2115h	1Ch	Al1 电压校正值	1mV	l16	-32768-32767	显示参数	ALL	NO
2115h	1Dh	Al2 电压校正值	1mV	l16	-32768-32767	显示参数	ALL	NO
2115h	1Eh	Al1 电压原始值	1mV	l16	-32768-32767	显示参数	ALL	NO
2115h	1Fh	Al2 电压原始值	1mV	I16	-32768-32767	显示 参数	ALL	NO
2115h	20h	模块温度值	1°C	U16	0-65535	显示 参数	ALL	NO
2115h	21h	绝对位置编码器圈数(32 位)	1	132	-1073741824- 1073741824	显示 参数	ALL	NO
2115h	22h	绝对位置编码器圈数高位	1	l16	-1073741824- 1073741824	显示参数	ALL	NO
2115h	23h	绝对位置编码器单圈位置(32 位)	1Unit	132	-1073741824- 1073741824	显示参数	ALL	NO
2115h	24h	绝对位置编码器单圈位置高位	1Unit	l16	-1073741824- 1073741824	显示参数	ALL	NO
2115h	25h	版本号1	0.01	U16	0-65535	显示参数	ALL	NO
2115h	26h	版本号 2	0.01	U16	0-65535	显示 参数	ALL	NO
2115h	27h	版本号 3	0.01	U16	0-65535	显示 参数	ALL	NO
2115h	28h	产品系列代号	1	U16	0-65535	显示 参数	ALL	NO
2115h	29h	故障记录的显示	1	U16	0-9	运行 设定	ALL	NO
2115h	2Ah	故障码	1	U16	0-65535	显示 参数	ALL	NO
2115h	2Bh	所选故障时间戳(32 位)	0.1s	U32	0-2147483647	显示 参数	ALL	NO
2115h	2Dh	所选故障时当前转速	1rpm	I16	-9000-9000	显示 参数	ALL	NO
2115h	2Eh	所选故障时当前电流 U	0.01A	U16	0-65535	显示 参数	ALL	NO
2115h	30h	所选故障时母线电压	0.1V	U16	0-65535	显示	ALL	NO

					1			
						参数		
2115h	31h	故障时输入端子状态	1	U16	0-511	显示	ALL	NO
						参数		
2115h	32h	所选故障时输出端子状态	1	U16	0-511	显示	ALL	NO
						参数		
2115h	33h	定制版软件版本号	0.01	U16	0-65535	显示	ALL	NO
	00	7C-1231A 17(117)A 1 3		010	0 00000	参数	,	
2115h	34h	负载率	1%	U16	0-500	显示	ALL	NO
211511	3411		190	016	0-500	参数	ALL	NO
		- 0.4.45-				显示		
2115h	35h	再生负载率	1%	U16	0-500	参数	ALL	NO
						显示		
2115h	36h	内部警告代码	1	U16	0-65535	参数	ALL	NO
						显示		
2115h	37h	内部指令当前段序号	1	U16	0-99	参数	ALL	NO
						显示		
2115h	38h	定制版系列号	1	U16	0-65535	参数	ALL	NO
					-1073741824-	显示		
2115h	39h	绝对位置计数器高 32 位(32 位)	1	132	1073741824	参数	ALL	NO
					-1073741824-	显示		
2115h	3Bh	反馈脉冲计数器高 32 位(32 位)	1	132	1073741824	参数	ALL	NO
					1010111021	> ×		

2120h 组:虚拟 DI 虚拟 DO

2120h	01h	虚拟 DI 使能设定 1	1	U16	0-65535	停机 设定	ALL	YES
2120h	02h	虚拟 DI 使能设定 2	1	U16	0-65535	停机 设定	ALL	YES
2120h	03h	虚拟 DI 使能设定 3	1	U16	0-65535	停机 设定	ALL	YES
2120h	04h	虚拟 DI 使能设定 4	1	U16	0-65535	停机 设定	ALL	YES
2120h	05h	虚拟 DO 使能设定 1	1	U16	0-65535	显示参数	ALL	YES
2120h	06h	虚拟 DO 使能设定 2	1	U16	0-65535	显示参数	ALL	YES

9.3 6000H 对象组一览表

索引	子索引	类型	名称	数据类型	访问类型	映射类型	单位
213Ah		VAR	绝对位置编码器圈数 32bit	DINT	ro	Т	编码器单位
213Bh		VAR	绝对位置编码器单圈位置 32bit	DINT	ro	Т	*1 圈
213Ch		VAR	绝对值编码器位置(低 32bit)	DINT	ro	Т	编码器单位
213Dh		VAR	绝对值编码器位置(高 32bit)	DINT	ro	Т	编码器单位
213Fh		VAR	伺服内部报警代码	UINT	ro	Т	
603Fh		VAR	错误代码	UINT	ro	Т	
6040h		VAR	控制字	UINT	rw	R	
6041h		VAR	状态字	UINT	ro	Т	
605Ah		VAR	快速停机方式选择	INT	rw	N	
605Dh		VAR	暂停方式选择	INT	rw	N	
6060h		VAR	控制模式	SINT	rw	R	
6061h		VAR	控制模式显示	SINT	ro	Т	
6062h		VAR	用户位置指令	DINT	ro	Т	用户指令单位
6063h		VAR	电机位置反馈	DINT	ro	Т	编码器单位
6064h		VAR	用户位置反馈	DINT	ro	Т	用户指令单位
6065h		VAR	用户位置偏差过大阈值	UDINT	rw	R	用户指令单位
6066h		VAR	位置偏差时间窗口	UINT	rw	R	ms
6067h		VAR	位置到达阈值	UDINT	rw	R	用户指令单位
6068h		VAR	位置到达时间窗口	UINT	rw	R	ms
606Bh		VAR	用户速度指令值	DINT	ro	Т	P09.13 百位决
606Ch		VAR	用户实际速度反馈	DINT	ro	Т	定
606Dh		VAR	速度到达阈值	UINT	rw	R	0: RPM, 1: 用户指令
606Eh		VAR	速度到达时间窗口	UINT	rw	R	ms
606Fh		VAR	零速阀值	UINT	rw	R	P09.13 百位决 定 0: RPM, 1: 用户指令
6071h		VAR	转矩目标值	INT	rw	R	0.1%
6072h		VAR	最大转矩	UINT	rw	R	0.1%
6074h		VAR	用户给定转矩值	INT	ro	Т	0.1%
6077h		VAR	实际转矩反馈	INT	ro	Т	0.1%
6078h		VAR	实际电流值	INT	ro	Т	0.1%
6079h		VAR	直流母线电压值	UDINT	ro	Т	0.001V
607Ah		VAR	目标位置值	DINT	rw	R	用户指令
607Ch		VAR	原点偏置	DINT	rw	R	用户指令
607Dh	0	ARRAY	软限位:最大子索引个数	UINT	ro	N	

607Dh	1	ARRAY	软限位: 最小位置限制	DINT	rw	R	用户指令
607Dh	2	ARRAY	软限位:最大位置限制	DINT	rw	R	用户指令
607Eh		VAR	指令极性	USINT	rw	R	
607Fh		VAR	最大轮廓转速	UDINT	rw	Т	P09.13 千位决 定, 0: 时间单位 ms 1: 用户指令 /s^2
6080h		VAR	最大电机转速	UDINT	rw	T	rpm
6081h		VAR	轮廓速度	UDINT	rw	R	P09.13 千位决
6083h		VAR	轮廓加速度	UDINT	rw	R	定,
6084h		VAR	轮廓减速度	UDINT	rw	R	0: 时间单位
6085h		VAR	快速停止减速度	UDINT	rw	R	ms 1: 用户指令 /s^2
6087h		VAR	转矩斜坡	UDINT	rw	R	单位: 1‰/s
608Fh	0	ARRAY	位置编码器分辨率	USINT	ro	N	
608Fh	1	ARRAY	电机一转编码器分辨率	UDINT	ro	Т	编码器单位
608Fh	2	ARRAY	电机转数	UDINT	ro	Т	转
6091h	0	ARRAY	电子齿轮比:最大子索引 个数	UINT	ro	R	
6091h	1	ARRAY	电子齿轮比:分子	UDINT	rw	R	
6091h	2	ARRAY	电子齿轮比:分母	UDINT	rw	R	
6092h	0	ARRAY	给进常量:最大子索引个 数	UINT	ro	R	
6092h	1	ARRAY	给进常量:分子	UDINT	rw	R	
6092h	2	ARRAY	给进常量:分母	UDINT	rw	R	
6093h	0	ARRAY	位置因子:最大子索引个数	UINT	ro	N	
6093h	1	ARRAY	位置因子: 分子	UDINT	rw	R	
6093h	2	ARRAY	位置因子: 进给常量	UDINT	rw	R	
6094h	0	ARRAY	速度编码器因子:最大子 索引个数	UINT	ro	N	
6094h	1	ARRAY	速度编码器因子: 分子	UDINT	rw	R	
6094h	2	ARRAY	速度编码器因子: 分母	UDINT	rw	R	
6095h	0	ARRAY	速度因子:最大子索引个数	UINT	ro	N	
6095h	1	ARRAY	速度因子1:分子	UDINT	rw	R	
6095h	2	ARRAY	速度因子1:分母	UDINT	rw	R	
6097h	0	ARRAY	加速度因子:最大子索引 个数	UINT	ro	N	
6097h	1	ARRAY	加速度因子: 分子	UDINT	rw	R	
6097h	2	ARRAY	加速度因子: 分母	UDINT	rw	R	

6098h		VAR		UINT	rw	R	
6099h	0	ARRAY	回原速度:最大子索引个数	UINT	ro	N	
6099h	1	ARRAY	回原模式中搜索减速点信 号速度	UDINT	rw	R	P09.13 百位决 定
6099h	2	ARRAY	回原模式中搜索原点开关 信号速度	UDINT	rw	R	0: RPM 1: 用户指令/s
609Ah		VAR	回原加速度	UDINT	rw	R	P09.13 千位决定 0: 0-1000RPM 所需时间 (ms), 1: 用户指令 /s^2
60B0h		VAR	位置偏移	DINT	rw	R	用户指令
60B1h		VAR	速度偏移	DINT	rw	R	P09.13 百位决 定 0:RPM,1: 用户 指令/s
60B2h		VAR	转矩偏移	INT	rw	R	0.1%
60B8h		VAR	探针功能	UINT	rw	R	
60B9h		VAR	探针状态字	UINT	ro	Т	
60BAh		VAR	探针1上升沿位置反馈	DINT	ro	Т	
60BBh		VAR	探针1下降沿位置反馈	DINT	ro	Т	
60BCh		VAR	探针 2 上升沿位置反馈	DINT	ro	Т	
60BDh		VAR	探针 2 下降沿位置反馈	DINT	ro	Т	
60C0h		VAR	插补子模式选择	INT	rw	R	
60C1h	0	ARRAY	插补数据记录:最大子索引个数	UINT	ro	N	
60C1h	1	ARRAY	插补位移	UDINT	rw	R	
60C2h	0	ARRAY	插补时间周期:最大子索引个数	UINT	ro	N	
60C2h	1	ARRAY	插补时间单位	USINT	rw	R	
60C2h	2	ARRAY	插补时间索引	SINT	rw	R	
60C5h		VAR	最大轮廓加速度	UDINT	rw	R	由 P09.13 千位决 定,0:0-1000RPM 所 需时间 (ms); 1:用 户指令/s^2
60C6h		VAR	最大轮廓减速度	UDINT	rw	R	由 P09.13 千位决 定,0:0-1000RPM 所 需时间 (ms); 1:用 户指令/s^2
60E0h		VAR	正向最大转矩限制	UINT	rw	R	0.1%
60E1h		VAR	负向最大转矩限制	UINT	rw	R	0.1%
60F2h		VAR	定位选项代码	UINT	rw	R	
60F4h		VAR	用户位置偏差	DINT	ro	Т	用户指令

60F8h		VAR	最大滑差	DINT	rw	R	
60FCh		VAR	电机位置指令反馈	DINT	ro	Т	用户指令
60FDh		VAR	DI 输入状态	UDINT	ro	Т	
60FEh	0	ARRAY	DO 输出: 最大子索引个数	UINT	ro	N	
60FEh	1	ARRAY	DO 输出状态	UDINT	rw	R	
60FEh	2	ARRAY	位屏蔽	UDINT	rw	R	
60FFh		VAR	目标速度	UDINT	rw	R	P09.13 百位决 定 0: RPM 1: 用户指令/s
6502h		VAR	支持伺服运行模式	UDINT	ro	Т	

6000h 对象字典详细说明

Object 213A _h : 绝对位置编码器圈数 32bit								
对象	描述	对象入口描述						
属性	值	属性	值					
索引	213Ah	子索引	00 _h					
名称	绝对位置编码器单圈位置 32bit	访问属性	ro					
数据结构	Variable	PDO 映射类型	TPDO					
数据类型	Integer32	数据范围	-2147483648~2147483647					
操作模式	ALL	默认值	0					
反映实绝对位置编码器圈数,同伺服参数 P21.32								

对象	?描述	对象入口描述		
属性	值	属性	值	
索引	213B _h	子索引	00 _h	
名称	绝对位置编码器单圈位置 32bit	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	Integer32	数据范围	-2147483648~2147483647	
操作模式	ALL	默认值	0	

Object 213C _h : 绝对值编码器位置(低 32bit)								
对象	描述	对象入口描述						
属性	值	属性	值					
索引	213C _h	子索引	00 _h					
名称	绝对值编码器位置(低 32bit)	访问属性	ro					
数据结构	Variable	PDO 映射类型	TPDO					
数据类型	Integer32	数据范围	-2147483648~2147483647					
操作模式	ALL	默认值	0					
反映实绝对值编码器位置(低 32bit))								

Object 213D _h : 绝对值编码器位置(高 32bit)								
对象	描述	对象入口描述						
属性	值	属性值值						
索引	213D _h	子索引	00 _h					
名称	绝对值编码器位置(高 32bit)	访问属性	ro					
数据结构	Variable	PDO 映射类型	TPDO					
数据类型	Integer32	数据范围	-2147483648~2147483647					
操作模式	ALL	默认值	0					
反映实绝对值编码器位置(高 32bit))								

Object 213Fh:伺服内部错误代码								
对象	描述	对象入	口描述					
属性	值	属性	值					
索引	213F _h	子索引	00 _h					
名称	错误代码	访问属性	ro					
数据结构	Variable	PDO 映射类型	TPDO					
数据类型	unsigned16	数据范围	0~65535					
操作模式	操作模式 ALL 默认值 0							
显示伺服驱动器错误代码,与	显示伺服驱动器错误代码,与面板显示错误代码数字值一致							

Object 603F _h :错误代码								
对象描述								
属性	值	属性	值					
索引	603F _h	子索引	00 _h					
名称	错误代码	访问属性	ro					
数据结构	Variable	PDO 映射类型	TPDO					
数据类型	unsigned16	数据范围	0~65535					
操作模式	ALL	默认值	0					

显示 CiA 协议故障码

注意: 这个不是伺服内部故障报警代码,伺服故障报警代码看 213Fh

Object 6040 _h :控制字				
对象	描述	对象入口描述		
属性	值	属性 值		
索引	6040 _h	子索引	00 _h	
名称	控制字	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	unsigned16	数据范围	0~65535	
操作模式	ALL	默认值	0	

用于使能,清除报警,启动各模式下的给定命令等

bit	定义	
0	伺服准备好	0: 无效 1: 有效
1	接通主回路电	0: 无效 1: 有效
2	快速停机	1: 无效 0: 有效
3	伺服运行	0: 无效 1: 有效
4~6	与运行控制模式相关	
7	故障复位	Bit7 上升沿有效 Bit7 保持为 1 时,其它控制指令无效
8	暂停	0: 无效 1: 有效
9~15	保留	

注意:1.状态字的每一个 bit 位单独赋值无意义,必须与其他位共同构成某一控制指令 2.bit0~bit3 必须按顺序发送命令,才能将伺服按 CiA402 状态机切换流程,并正确导入预计的状态

Object 6041 _h :状态字					
对象描述					
属性	值	属性	值		
索引	6041 _h	子索引	00 _h		
名称	状态字	访问属性	ro		
数据结构	Variable	PDO 映射类型	TPDO		
数据类型	unsigned16	数据范围	0~65535		
操作模式	ALL	默认值	0		

bit	定义	
0	伺服准备好	0: 无效 1: 有效
1	可以开启伺服运行	0: 无效 1: 有效
2	伺服运行状态	0: 无效 1: 有效
3	伺服故障	0: 无效 1: 有效
4	接通主回路电压	0: 无效 1: 有效

5	快速停机	1: 无效 0: 有效
6	伺服不可运行	0: 无效 1: 有效
7	警告	0: 无效 1: 有效
8	厂家自定义	保留
9	远程控制	0: 无效 1: 有效
10	目标到达(与运行控制模式相关)	0: 无效 1: 有效
11	内部软件限位	0: 无效 1: 有效
12~13	与运行控制模式相关	
14	厂家自定义	保留
		0: 无效 1: 有效
15	回原完成	绝对值系统,P09.14 右起第 2 位设置为 2 后, 回原点后会存
		储 bit15 置 1(掉电保持),P20.06=7 清除回原 BIT15 状态位

下面为基本的几种状态字的意义描述(X表示为任意数值)

状态字(二进制)	描述	
XXXX XXXX X0XX 0000	伺服没有准备好(Not ready to switch)	
XXXX XXXX X1XX 0000	伺服没有准备好(Not ready to switch) 伺服启动失败(Switch on disable) 伺服准备好(Ready to switch on) 伺服启动(Switch on)	
XXXX XXXX X01X 0001	伺服准备好(Ready to switch on)	
XXXX XXXX X01X 0011	伺服启动(Switch on)	
XXXX XXXX X01X 0111	伺服操作使能(Operation enable)	
XXXX XXXX X00X 0111	快速停机有效(Quick stop active)	
XXXX XXXX X0XX 1111	故障反应有效(Fault reaction active)	
XXXX XXXX X0XX 1000	伺服故障 (Fault)	

注意:控制字 6040h 按顺序发送命令后,状态字 6041h 反馈显示伺服当前确定的状态

Object 605An:快速停机方式选择						
对象描述 对象入口描述 对象入口描述						
属性	值	属性 值				
索引	605A _h	子索引	00 _h			
名称	快速停机方式选择	访问属性	rw			
数据结构	Variable	PDO 映射类型	NO			
数据类型	Integer16	数据范围	0~7			
操作模式	ALL	默认值	1			

控制字 6040hbit2=0 时,快速停机方式由 605Ah 决定

设定值	停机方式
0	按 P06.26 设定方式减速停机,保持自由
1	按 6084h 减速时间减速停机,保持自由
2	按 6085h 减速时间减速停机,保持自由
3	按 6085h 减速时间减速停机,保持自由
4	没有定义,不能设置
5	按 6084h 减速时间减速停机,保持位置锁定
6	按 6085h 减速时间减速停机,保持位置锁定
7	按 6085h 减速时间减速停机,保持位置锁定

注意:605A h 设为 0,停机方式与 P06.26 设定有关:如果 P06.26 设 0,急停方式为自由停机;如果 P06.26 设 1 或 2,急停将按 6084h 减速停机,停机后均保持自由 605A h 设为 1, 2, 3, 5, 6, 7 任意一种,ALL 模式进行急停均按上表所描述方式

Object 605D _h :暂停方式选择					
对象描述					
属性		值	属性	值	
索引		605D _h	子索引	00 _h	
名称		暂停方式选择	访问属性	rw	
数据结构		Variable PDO 映射类型 NO			
数据类型	Integer16 数据范围 -32768~32767				
操作模式		ALL 默认值 1			
控制字 6040hbit8 暂停功能有效后,暂停效果由 605Dh 决定					
设定值 1	停机方式				
0	不支持,不能设置				
1 1	按 6084h 减速时间减速,然后保持位置锁定				
2	按 6085h 减速时间减速,然后保持位置锁定				

Object 6060 _h :控制模式					
	对象	描述		对象入	口描述
厚	性	值	i	属性	值
索引		606	0 _h	子索引	00h
名称		控制棒	莫式	访问属性	rw
数据结构		Varia	ble	PDO 映射类型	RPDO
数据类型		integ	er8	数据范围	0~10
操作模式	AL		L	默认值	0
选择要运行的	控制模式				
设定值	定义				
1	轮廓位置模式(PP)		参考 5.2 章		
2	速度模式		不支持		
3	轮廓速度模式	(PV)	参考 5.3 章		
4	轮廓转矩模式(PT)		参考 5.4 章		
6	回原模式(HI	回原模式(HM)			
8	周期同步位置	周期同步位置模式(CSP)			
9	周期同步位速度模式(CSV)		参考 5.8 章		
10	周期同步转矩	模式(CST)	参考 5.9 章		

Object 6061 _h :控制模式显示					
对象描述			对象入	 口描述	
Į.	属性	值	i	属性	值
索引		606	1 _h	子索引	00 _h
名称		控制模式	式显示	访问属性	ro
数据结构		Varia	ble	PDO 映射类型	TPDO
数据类型		integ	er8	数据范围	0~10
操作模式			L	默认值	0
显示正在伺息	最运行的控制模式	t			
数值	定义				
1	轮廓位置模式(PP)		参考 5.2 章		
2	速度模式		不支持		
3	轮廓速度模式	(PV)	参考 5.3 章		
4	轮廓转矩模式(PT)		参考 5.4 章		
6	回原模式(HM)		参考 5.5 章		
8	周期同步位置模式(CSP)		参考 5.7 章		
9	周期同步位速度模式(CSV)		参考 5.8 章		
10	周期同步转矩	模式(CST)	参考 5.9 章		

Object 6062 _h :用户位置指令				
对象	描述	Z 7	İ 象入口描述	
属性	值	属性	值	
索引	6062h	子索引	00 _h	
名称	用户位置指令	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	Integer32	数据范围	-2147483648~2147483647	
操作模式	PP/CSP/HM	默认值	0	
实时显示位置指令 (用户单位)				

Object 6063 _h :电机位置反馈				
对象	描述	对象入口描述		
属性	值	属性 值		
索引	6063 _h	子索引	00 _h	
名称	电机位置反馈	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	Integer32	数据范围	-2147483648~2147483647	
操作模式	ALL	默认值	0	
实时显示电机绝对位置反馈, 与 P21.17 保持一致(编码器单位)				

Ī	对 属性	象入口描述
Ī	属性	值
54 _h 子	子索引	00 _h
置反馈 说	访问属性	ro
able P	PDO 映射类型	TPDO
er32 数	数据范围	-2147483648~2147483647
L J	默认值	0
	置反馈 able er32	置反馈 访问属性 able PDO 映射类型 er32 数据范围

反映实时用户绝对位置反馈,与 P21.07 应该一致(指令单位)

Object 6065 _h :用户位置偏差过大阈值				
对象	描述	对象入口描述		
属性	值	属性 值		
索引	6065 _h	子索引	00 _h	
名称	用户位置偏差过大阈值	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	unsigned32	数据范围	0~ 4294967295	
操作模式	PP/CSP/HM	默认值	100000000	

用户位置指令 6062h 与用户位置反馈 6064h 的差值超过 \pm 6065h 时,发生位置偏差过大故障 Er.043

注意: 位置偏差过大阈值以 P00.19 和 6065h 两者较小值为准

Object 6066h:位置偏差时间窗口			
对象描述		对象入口描述	
属性	值	属性	值
索引	6066 _h	子索引	00 _h
名称	位置偏差时间窗口	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned16	数据范围	0~65535
操作模式	PP/CSP/HM	默认值	0

如果 60F4h 的值超过位置偏差过大阈值(P00.19 和 6065h 两者较小值为准),并且持续时间大于 6066h 设定值的话,6041h 状态字的 bit13 将置为 1

Object 6067 _h :位置到达阈值			
对象	描述	对象入	口描述
属性	值	属性	值
索引	6067 _h	子索引	00 _h
名称	位置到达阈值	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	unsigned32	数据范围	0~ 4294967295

操作模式 PP/CSP/HM 默认值 1000000000

位置模式下,用户位置指令 6062h 与用户实际位置反馈 6064h 的差值在 \pm 6067h 以内,且时间达到 6068h 时,认为位置到达,状态字 6041h 的 bit10=1

位置模式,伺服使能有效时,此标志位有意义;否则无意义

注意: 位置到达阈值以 P04.47 和 6067 值两者较小值为准,定位完成输出还与 P04.48 有关

Object 6068 _h :位置到达时间窗口				
对象	描述	对象入	口描述	
属性	值	属性	值	
索引	6068 _h	子索引	00 _h	
名称	位置到达时间	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	Unsigned16	数据范围	0~65535	
操作模式	PP/CSP/HM	默认值	0	

位置模式下,用户位置指令 6062h 与用户实际位置反馈 6064h 的差值在 \pm 6067h 以内,认为位置到达,且由 6068 设定状态字 6041h bit10 为 1 的保持时间

位置模式,伺服使能有效时,此标志位有意义; 否则无意义

注意:用此功能请将参数 P04.48 设 2,且以 6068h 和 P04.49 定位完成保持时间两者之中的较大值为准

Object 606B _n :用户速度指令值				
对象描述		对象入口描述		
属性	值	属性 值		
索引	606B _h	子索引	00 _h	
名称	用户速度指令值	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	integer 32	数据范围	-2147483648~2147483647	
操作模式	PV/CSV	默认值	0	
反映用户实际速度指令,如果转换成转速单位则与 P21.03 一致				

Object 606C _h :用户实际速度反馈				
对象描述		对象入口描述		
属性	值	属性 值		
索引	606C _h	子索引	00 _h	
名称	用户实际速度反馈	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	integer 32	数据范围	-2147483648~2147483647	
操作模式	ALL	默认值	0	
反映用户实际速度反馈值,如果转换成转速单位则与 P21.01 一致				

Object 606D _h :速度到达阈值			
对象描述			
属性	值	属性	值

索引	606D _h	子索引	00 _h
名称	速度到达阈值	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned16	数据范围	0~65535
操作模式	PV/CSV	默认值	65535

目标速度 60FFh 与用户实际速度 606Ch 的差值在 $\pm 606Dh$ 以内,且时间达到 606Eh 认为速度到达,状态字 6041h 的 bit10=1,同时 DO 输出有效

轮廓速度模式和同步周期速度模式,伺服使能有效时,此标志位有意义,否则无意义

Object 606E _h :速度到达时间窗口			
对象	描述	对象入口描述	
属性	值	属性	值
索引	606E _h	子索引	00 _h
名称	速度到达时间	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned16	数据范围	0~65535
操作模式	PV/CSV	默认值	0

目标速度 60FFh 与用户实际速度 606Ch 的差值在 $\pm 606\text{Dh}$ 以内,且时间达到 606Eh 认为速度到达,状态字 6041h 的 bit10=1,同时 DO 输出有效

轮廓速度模式和同步周期速度模式下,伺服使能有效时,此标志位有意义,否则无意义

Object 606F _h :零速阀值			
对象描述		对象入口描述	
属性	值	属性	值
索引	606F _h	子索引	00 _h
名称	零速阀值	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned16	数据范围	0~65535
操作模式	PV	默认值	65535

用户速度反馈 606Ch 在 ± 606 Fh 内,且时间达到 606Eh 设定值表示用户速度为 0,则 6041h 的 bit12=1轮廓速度模式,此标志位有意义;否则无意义。此标志位与伺服使能与否无关

Object 6071 _h :转矩目标值				
对象描述		对象入口描述		
属性	值	属性	值	
索引	6071 _h	子索引	00 _h	
名称	转矩目标值	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	integer16	数据范围	-5000~5000	
操作模式	PT/CST	默认值	0	
PT/CST 模式下的转矩给定,单位 0.1%				

100.0% 对应于 1 倍的电机额定转矩				
Object 6072h:最大转矩				
对象描述 对象为口描述				
属性	值	属性	值	
索引	6072 _h	子索引	00 _h	
名称	最大转矩	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型 unsigned16 数据范围 0~5000				
操作模式 ALL 默认值 5000				
设定电机的最大转矩,最大转矩指令(单位 0.1%)				
6072h 最大转矩和内部转矩限制参数(P03.08,03.09)两者取较小值有效				

Object 6074 _h :用户给定转矩值				
对象描述		对象入口描述		
属性	值	属性	值	
索引	6074 _h	子索引	00h	
名称	用户给定转矩值	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	integer16	数据范围	-5000~5000	
操作模式	ALL	默认值	0	
伺服运行状态下,实时显示内部给定转矩值,单位 0.1%				
100.0% 对应于 1 倍的电机额定转矩				

Object 6075h:电机额定电流				
对象描述			象入口描述	
属性	值	属性	值	
索引	6075 _h	子索引	00 _h	
名称	电机额定电流	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	integer16	数据范围	0~65535	
操作模式	ALL	默认值	-	
实时显示电机额定电流,单位 000.1A				

Object 6076 _h :电机额定转矩				
对象描述				
属性	值	属性	值	
索引	6076 _h	子索引	00 _h	
名称	电机额定转矩	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	

数据类型	integer16	数据范围	0~65535
操作模式	ALL	默认值	-
显示电机额定转矩值,单位 000.1Nm			

Object 6077 _h :实际转矩反馈				
对象描述		对象入口描述		
属性	值	属性	值	
索引	6077 _h	子索引	00 _h	
名称	实际转矩反馈	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	integer16	数据范围	-5000~5000	
操作模式	ALL	默认值	0	
实时显示伺服内部转矩反馈				
100.0% 对应于 1 倍的电机额定转矩,应与 P21.04 一致。单位 0.1%				

Object 6078 _h :实际电流值				
对象描述		对象入口描述		
属性	值	属性	值	
索引	6078 _h	子索引	00 _h	
名称	实际电流值	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	integer16	数据范围	-32768~32767	
操作模式	ALL	默认值	0	
实时显示实际电流值(单位:0.1%额定值)				

Object 6079 _h :直流母线电压值				
对象	描述	对象入口描述		
属性	值	属性	值	
索引	6079 _h	子索引	00 _h	
名称	直流母线电压值	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	Unsigned32	数据范围	0~ 4294967295	
操作模式	ALL	默认值	0	
显示母线电压(单位:1mv),应与 P21.06 母线电压值一致				

Object 607A _h :目标位置值				
对象描述			象入口描述	
属性 值 属性 值			值	
索引	607A _h	子索引	00 _h	

名称	目标位置值	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Integer32	数据范围	-2147483648~2147483647
操作模式	PP/CSP	默认值	0

设置轮廓位置模式和同步周期位置模式下的伺服目标位置

轮廓位置模式:如果运行绝对指令时,定位完成后,用户绝对位置 6064h = 607Ah;如果运行相对指令,定位完成后,用户位移增量 = 607Ah

Object 607C _h :原点偏置				
对象描述				
属性	值	属性	值	
索引	607C _h	子索引	00 _h	
名称	原点偏置	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	Integer32	数据范围	-2147483648~2147483647	
操作模式	НМ	默认值	0	

- 1.原点回零完成后,电机停止位置为机械原点,通过设置 607Ch,可以设定机械原点与机械零点的关系: 机械原点 = 机械零点 + 607C(原点偏置)当 607C=0 时,机械原点与机械零点重合
- 2.原点偏置生效条件:上电运行,已完成原点回零操作,状态字 6041h 的 bit15=1
- 3.原点回零模式下,上位机先应选择原点回零方式(6098h),设置回零速度(6099-1h 6099-2h)、回零加速度(609Ah), 给出原点回零触发信号后,伺服将按照设定自动找机械原点,并完成机械原点与机械零点的相对位置关系设置。

例如:通过回零方式 35,以当前位置为机械原点,触发原点回零后,用户当前位置 6064h= 607Ch,电机轴没有转动机械原点:机械上某一固定的位置,对应原点开关,限位开关、电机 Z 信号等。 机械零点:机械上绝对 0 位置

Object 607D _n :软限位				
对象描述			象入口描述	
属性	值	属性	值	
索引	607D _h	子索引	00 _h	
名称	软限位子索引个数	访问属性	Rw	
数据结构	/	PDO 映射类型	RPDO	
数据类型	Unsigned8	数据范围	0~512	
操作模式	ALL	默认值	2	

位置反馈到达内部软限位时,将在到达限位值处停止,伺服报出超程警告(AL.086 或 AL.087),状态字 6041h 的 bit11=1,即软限位生效。此时输入反向运动指令可将伺服退出位置超限状态,并将 bit11 清零

转矩模式和速度模式下,软限位功能受 P06.28 约束,当 P06.28=1,软限位无效。开启软限位 P06.28=0, P07.08=1 或 2,具体按照以下:

对象	描述	对象	京 入口描述
属性	值	属性	值
索引	607D _h	子索引:	01 _h
名称	最小软件位置限制	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO

数据类型	Integer32	数据范围	-2147483648~2147483647
操作模式	ALL	默认值	-2147483648

软限位功能: P07.08 右起第四位

0: 不开启软件限位

1: 驱动器上电开启软限位功能

2: 驱动器原点回归之后开启软件限位功能

设置软件绝对位置限制的最小值,当为-2147483648 时表示负向不限制

最小软件绝对位置限制 = (607D-01h)

属性	值	属性	值
索引	607D _h	子索引:	02 _h
名称	最大软件位置限制	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Integer32	数据范围	-2147483648~2147483647
操作模式	ALL	默认值	2147483647

软限位功能: P07.08 右起第四位

0: 不开启软件限位

1: 驱动器上电开启软限位功能

2: 驱动器原点回归之后开启软件限位功能。

设置软件绝对位置限制的最小值,当为 2147483647 时,表示正方向无限制

最大软件绝对位置限制 = (607D-02h)

Object 607E _n :指令极性				
对象描述				
属性	值	属性	值	
索引	607E _h	子索引	00 _h	
名称	指令极性	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	Unsigned8	数据范围	0~1	
操作模式		默认值	0	

1 设置转矩位指令、位置指令、速度指令的极性,使用时转速、位置、转矩极性应该全为 0(Bit5~7~25) 0)或者设置 224 ((Bit5~7~25) 1),设置完 607Eh,需要将伺服重新上电后才生效

Bit	定义
0	保留
1	保留
2	保留
3	保留
4	保留
5	将转矩指令 6071h/60B2h×(-1)
6	将速度指令 60FFh/60B1h×(-1)
7	将位置指令 607Ah/60B0h×(-1)

Object 607F _h :最大转速限制				
对象描述			象入口描述	
属性	值	属性	值	
索引	607F _h	子索引	00 _h	
名称	最大轮廓转速	访问属性	rw	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	Unsigned32	数据范围	0~4294967295	
操作模式	PP/PV/PT/CSV/CST	默认值	13107200	

PP/PV/PT/CSV/CST 模式下的最大速度限制,单位:指令单位/S

PP/PV/CSV 模式,最大速度限制以 607Fh 和 6080h 两者中较小值为准

PT/CST 模式,最大速度限制以 607Fh、6080h、内部速度限制(P03.27,P03.28)三者中的较小值为准

Object 6080 _h :最大电机转速				
对象描述			象入口描述	
属性	值	属性	值	
索引	6080 _h	子索引	00 _h	
名称	最大电机转速	访问属性	rw	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	Unsigned32	数据范围	0~4294967295	
操作模式	ALL	默认值	6500	

6080h 设置最大电机转速,用以保护电机,所有模式下均有效:单位:Rpm/min

- 1.速度模式下,最大转速限制以 607Fh 和 6080h 两者中较小值为准
- 2.转矩模式下,最大转速限制以607Fh、6080h、内部速度限制(P03.27,P03.28)三者中的较小值为准
- 3.位置模式下,PP 模式最大转速限制以 607Fh 和 6080h 两者中较小值为准

CSP 模式最大转速限制以 6080h 为准,伺服内部功能码 P09.17 的右起第一位可选择设定 6080h 限制与否:

- 1) CSP 模式,当 P09.17 右起第一位设 0,6080h 不做速度限制,超过最大转速会报 Er.78 指令异常故障
- 2) CSP 模式, 当 P09.17 右起第一位设 1, 电机运行最大转速按照 6080h 设定值

Object 6081 _h :轮廓速度			
对象	描述	对象入口描述	
属性	值	属性	值
索引	6081 _h	子索引	00h
名称	轮廓速度	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	0~4294967295
操作模式	PP	默认值	0

轮廓位置模式下位移指令的匀速运行时候的速度,单位: 用户指令单位/S

6081h 实际运行的速度受到 607F 和 6080 两者中较小值所限制

Object 6083 _h :轮廓加速度			
对象	描述	对象入口描述	
属性	值	属性	值
索引	6083 _h	子索引	00 _h
名称	轮廓加速度	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	0~4294967295
操作模式	PP/PV	默认值	13107200

操作面板 P09.13 右起第四位可以设置加速度单位,

当为 0 时:轮廓位置模式的意义为电机从 0rpm 加速到 1000rpm 所对应的位置给定指令的加速度,单位为 rpm/ms;

当为1时: 为用户指令单位/S²

Object 6084 _h :轮廓减速度				
对象描述		प्रतः	对象入口描述	
属性	值	属性	值	
索引	6084 _h	子索引	00 _h	
名称	轮廓减速度	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	Unsigned32	数据范围	0~4294967295	
操作模式	ALL	默认值	131072000	

- 1.操作面板 P09.13 右起第四位可设置加速度单位: 当为 0 时: 单位为 rpm/ms; 当为 1 时: 为用户指令单位/ S^2
- 2. ALL 模式运转中,进行快速停机:设定 605A=1 或 5,急停均按 6084h 作减速停机
- 3. ALL 模式运转中,进行暂停:设定 605D=1,暂停均按 6084h 作减速停机
- 4. ALL 模式运转中,进行 OFF 停机: P06.26=1 或 2 按 6084h 作减速停机
- 5.ALL 模式运转中,发生 NO2 故障: P06.27=1,按最快零速停机

Object 6085 _h :快速停止减速度				
对象描述			象入口描述	
属性	值	属性	值	
索引	6085h	子索引	00h	
名称	快速停止减速度	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	Unsigned32	数据范围	0~4294967295	
操作模式	ALL	默认值	4294967295	

- 1. 操作面板 P09.13 右起第四位可减速度单位: 当为 0 时: 单位为 rpm/ms; 当为 1 时: 为用户指令单位/ S^2
- 2.ALL 模式运转中,进行快速停机:设定 605A=2,3,6,7 任意一种,急停均按 6085h 设定值作减速停机
- 3.ALL 模式运转中,进行暂停:设定 605D=2,暂停均按 6085h 作减速停机
- 4. ALL 模式运转中,发生超程停机:均按 6085h 作减速停机

Object 6087_h:转矩斜坡

对象描述		对象入口描述	
属性	值	属性	值
索引	6087 _h	子索引	00 _h
名称	转矩斜坡	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	0~4294967295
操作模式	PT/CST	默认值	1000
廓转矩模式下的转矩指令加速度,其意义为:每秒转矩指令增量(单位:1‰/s)			

以器分辨率 ; / F gned8	案 属性 子索引 访问属性 PDO 映射类型 数据范围 默认值 属性 子索引 访问属性	值 00h Ro NO 0~2 2 值 01h
8Fh = 1 1器分辨率 i / F gned8 数 LL 黑 i	子索引 访问属性 PDO 映射类型 数据范围 默认值 属性	00h Ro NO 0~2 2 值 01h
BAS分辨率 i, F p p p p p p p p p p p p p p p p p p	访问属性 PDO 映射类型 数据范围 默认值 属性 子索引	Ro NO 0~2 2 值 01 _h
/ F gned8	PDO 映射类型 数据范围 默认值 属性 子索引	NO 0~2 2
gned8 \$ LL	数据范围 默认值 属性 子索引	0~2 2 值 01 _h
直 8Fh =	默认值 属性 子索引	2 值 01 _h
直 8Fh ==	属性	值 01 _h
8F _h =	子索引	01 _h
8F _h =	子索引	01 _h
器分辨率	访问属性	
	31 3N 12	Rw
/ F	PDO 映射类型	NO
ned32	数据范围	1~4294967295
LL	默认值	131072
直	属性	值
8F _h	子索引	02 _h
对应电机旋转 以数	访问属性	Rw
/ F	PDO 映射类型	NO
ned32 #	数据范围	1~4294967295
LL	 默认值	1
	8Fh 対应电机旋转 J数 / ned32	8Fh 子索引 对应电机旋转 访问属性 / PDO 映射类型 ned32 数据范围

Object 6091 _h :电子齿轮比				
对象描述				
属性	值	属性	值	
索引	6091 _h	子索引	00 _h	
名称	电子齿轮比索引个数	访问属性	Rw	
数据结构	/	PDO 映射类型	RPDO	
数据类型	Unsigned8	数据范围	0~512	

操作模式	ALL	默认值	2
属性	值	属性	值
索引	6091 _h	子索引	01 _h
名称	电子齿轮比:分子	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	1
属性	值	属性	值
索引	6091 _h	子索引	02 _h
名称	电子齿轮比:分母	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	1

J3E 伺服驱动器提供 2 套电子齿轮比方案,一种是 J3E 伺服内部默认参数,另外一种是启用 608Fh/6091h/6092h方案,这 2 种方案通过 P09.13 右起第 2 位切换。

当 P09.13 的 右起第 2 位设置为 0,不启用 608Fh/6091h/6092h。此时, P00.08 和 P00.10/P00.12 起作用; 当 P09.13 的 右起第 2 位设置为 1,启用 608Fh/6091h/6092h。此时, P00.08 和 P00.10/P00.12 不起作用。

举例: 需要设置上位指令为 10000 个驱动轴转一圈,可以设置 6091h(1:1),6092h(10000:1)

- ◆ 内部速度=60FFh*6091h 分子*6092h 分母*60 /6091h 分母/6092h 分子,速度反馈跟指令一致,P09.13 右起 第三位决定速度的单位,0:RPM,1:用户指令/s,由 6091h,6092h 决定速度单位
- ◆ 齿轮比设定允许范围:编码器分辨率/10000000 ≤齿轮比 ≤编码器分辨率/2.5
- ◆ 最终的电子齿轮比可以按以下操作确认: P21.70 设置为 3,P21.71 和 P21.72 分别显示 最终的伺服齿轮比分子的低 16 位和高 16 位,P21.73 和 P21.74 分别显示 最终的伺服齿轮比分母的低 16 位和高 16 位

Object 6092 _h :给进常量			
对象描述		对象入口描述	
属性	值	属性	值
索引	6092 _h	子索引	00 _h
名称	子索引个数	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned8	数据范围	0~512
操作模式	ALL	默认值	2
属性	值	属性	值
索引	6092 _h	子索引	01 _h

名称	给进常量:分子	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	131072(17bit 编码器)
属性	值	属性	值
索引	6092 _h	子索引	02 _h
名称	给进常量:分母	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	1
与 608Fh、6091h 相互作用构成电子齿轮比。具体内容参考 Object 6091 _h :电子齿轮比			

Object 6093 _h :位置因子	2_			
对象描述		对誓	对象入口描述	
属性	值	属性	值	
索引	6093 _h	子索引	00h	
名称	子索引个数	访问属性	Rw	
数据结构	/	PDO 映射类型	RPDO	
数据类型	Unsigned8	数据范围	0~512	
操作模式	ALL	默认值	2	
属性	值	属性	值	
索引	6093 _h	子索引	01 _h	
名称	位置因子: 分子	访问属性	Rw	
数据结构	/	PDO 映射类型	RPDO	
数据类型	Unsigned32	数据范围	1~4294967295	
操作模式	ALL	默认值	1	
属性	值	属性	值	
索引	6092 _h	子索引	02 _h	
名称	位置因子: 分母	访问属性	Rw	
数据结构	/	PDO 映射类型	RPDO	
数据类型	Unsigned32	数据范围	1~4294967295	
操作模式	ALL	默认值	1	
保留参数				

Object 6094h:速度编码器因子			
对象描述		对象入口描述	
属性	值	属性	值
索引	6094 _h	子索引	00 _h

名称	子索引个数	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned8	数据范围	0~512
操作模式	ALL	默认值	2
属性	值	属性	值
索引	6094 _h	子索引	01 _h
名称	速度编码器因子: 分子	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	1
属性	值	属性	值
索引	6094 _h	子索引	02 _h
名称	速度编码器因子: 分母	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	1
保留参数			

Object 6095h:速度因子			
对象描述		对象	8入口描述
属性	值	属性	值
索引	6095 _h	子索引	00 _h
名称	子索引个数	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned8	数据范围	0~512
操作模式	ALL	默认值	2
属性	值	属性	值
索引	6095 _h	子索引	01 _h
名称	速度因子: 分子	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	1
属性	值	属性	值
索引	6095 _h	子索引	02 _h
名称	速度因子: 分母	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	1

保留参数

Object 6097h:加速度因子			
对象描述		对象入口描述	
属性	值	属性	值
索引	6095h	子索引	00h
名称	子索引个数	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned8	数据范围	0~512
操作模式	ALL	默认值	2
属性	值	属性	值
索引	6095 _h	子索引	01 _h
名称	加速度因子: 分子	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	1
属性	值	属性	值
索引	6092 _h	子索引	02 _h
名称	加速度因子: 分母	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	ALL	默认值	1
保留参数			

Object 6098 _h :回原模式			
对象描述			象入口描述
属性	值	属性	值
索引	6098 _h	子索引	00 _h
名称	回原模式	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Integer8	数据范围	0~35
操作模式	НМ	默认值	0
根据原点开关信号、限位开关信号和编码器 Z 信号等规定了 31 种回原方式。具体看 5.5 章回原模式			

Object 6099 _h :回原速度			
X	寸象描述	对象入口描述	
属性	值	属性	值
索引	6099 _h	子索引	00 _h

名称	子索引个数	访问属性	RO
数据结构	/	PDO 映射类型	NO
数据类型	Unsigned8	数据范围	0~512
操作模式	НМ	默认值	2
属性	值	属性	值
索引	6099 _h	子索引	01 _h
名称	回原模式中搜索减速点信号速度	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	НМ	默认值	218453
属性	值	属性	值
索引	6099 _h	子索引	02 _h
名称	回原模式中搜索原点开关信号速度	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	1~4294967295
操作模式	НМ	默认值	21845

P09.13 右起第三位可以设置速度单位类型,当为 1 时速度单位为用户指令/S,当为 0 时为 rpm 回原模式时的 2 种速度,60990120h 速度可以设置为较高数值,用于快速预判,60990220h 可以设置较低速度,用于精准定位

Object 609A _h :回原加速度				
对象	描述	对复	象入口描述	
属性	值	属性 值		
索引	609A _h	子索引	00 _h	
名称	回原加速度	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	unsigned32	数据范围	0~4294967295	
操作模式	НМ	默认值	1310720	

P09.13 右起第四位可以设置加速度单位类型,当为 1 时速度单位为用户指令/S^2,当为 $0\sim1000$ rpm 的速时间单位 ms 例如: 当 P09.13=16#X0XX 时,意义为电机从 0rpm 加速到 1000rpm 时的加速度时间,单位 ms

Object 60B0 _h :位置偏移			
对象描述			
属性	值	属性	值
索引	60B0 _h	子索引	00 _h
名称	位置偏移	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Integer32	数据范围	-2147483648~2147483647
操作模式	CSP	默认值	0

设置同步周期位置模式下的位置偏移,伺服目标位置=607Ah+60B0h

Object 60B1 _n :速度偏移				
对象描述				
属性	值	属性 值		
索引	60B1 _h	子索引	00 _h	
名称	速度偏移	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	Integer32	数据范围	-2147483648~2147483647	
操作模式	CSV	默认值	0	
设置同步周期速度模式下的速度偏移,伺服目标速度=60FFh+60B1h				

Object 60B2 _h :转	矩偏移			
对象描述				
属性	值	属性	值	
索引	60B2h	子索引	00 _h	
名称	转矩偏移	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	Integer16	数据范围	-32768~32767	
操作模式	CSP/CSV/CST	默认值	0	
设置同步周期转矩模式下的转矩偏移,伺服目标转矩=6071h+60B2h				
Object 60B8 _h :探针功能				
714.14.7 714.7 C 144.7				

Object obbolitik vi - While			
	对象描述	对复	象入口描述
属性	值	属性	值
索引	60B8 _h	子索引	00 _h
名称	探针功能	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned16	数据范围	0~65535
操作模式	/	默认值	0

伺服内部参数 P09.14 最高位(右起第四位)可以选择探针功能类型,对应 60B9h 探针功能状态字 部分 DI 信号和 Z 信号太过于狭窄,,伺服不能确保能捕捉所有的上升沿和下降沿信号。所以使用时候请注意:1.同一探针情况下,尽量避免同时使用上升沿和下降沿

2.使用 Z 信号时,只能使用上升沿,不能使用下降沿

		说明	
Bit	P09.14==16#0000	P09.14==16#1000	
	探针1使能	探针 1 使能	
0	0: 不使能探针 1 1: 使能探针 1	0: 不使能探针 1 1: 使能探针 1	
_	探针 1 触发模式	探针 1 触发模式	
1	0: 单次触发 1: 连续触发	0: 单次触发 1: 连续触发	
2	探针 1 触发信号选择	探针1触发信号选择	
2	0: DI3 触发 1: Z 信号触发	0: DI3 触发 1: Z 信号触发	
3	保留	保留	
	探针 1 上升沿锁存	探针 1 上升沿锁存	
4	0: 不使用探针 1 上升沿锁存	0: 不使用探针 1 上升沿锁存	
	1: 使用探针 1 上升沿锁存	1: 使用探针 1 上升沿锁存	
	探针 1 下降沿锁存	探针1下降沿锁存	
5	0: 不使用探针1下降沿锁存	0: 不使用探针 1 下降沿锁存	
	1: 使用探针1下降沿锁存	1: 使用探针 1 下降沿锁存	
6~7	保留	保留	
8	探针 2 使能	探针 2 使能	
0	0: 不使能探针 2 1: 使能探针 2	0: 不使能探针 2 1: 使能探针 2	
9	探针 2 触发模式	探针 2 触发模式	
9	0: 单次触发 1: 连续触发	0: 单次触发 1: 连续触发	
10	探针 2 触发信号选择	探针 2 触发信号选择	
10	0: DI4 触发 1: Z 信号触发	0: DI4 触发 1: Z 信号触发	
11	保留	保留	
	探针 2 上升沿锁存	探针 2 上升沿锁存	
12	0: 不使用探针 2 上升沿锁存	0: 不使用探针 2 上升沿锁存	
	1: 使用探针 2 上升沿锁存 1: 使用探针 2 上升沿锁存		
	探针 2 下降沿锁存	探针 2 下降沿锁存	
13	0: 不使用探针 2 下降沿锁存	0: 不使用探针 2 下降沿锁存	
	1: 使用探针 2 下降沿锁存	1: 使用探针 2 下降沿锁存	
	1	1	

Object 60B9h:探针状态字			
对象描述			对象入口描述
属性	值	属性	值
索引	60B9 _h	子索引	00 _h
名称	探针状态字	访问属性	ro
数据结构	Variable	PDO 映射类型	TPDO
数据类型	Unsigned16	数据范围	0~65535
操作模式	/	默认值	0

伺服内部参数 P09.14 最高位(右起第四位)可以选择探针状态字类型,对应 60B8h 探针功能

אגפיוניואונייו	P09.14 最高位(石起第四位)可以选择探针状态字类 说明	主,利应 00000 1米针为能	
Bit		D00 1416#1000	
	P09.14==16#0000	P09.14==16#1000	
0	探针 1 使能	探针 1 使能	
0	0: 不使能探针 1 1: 使能探针 1	0: 不使能探针 1 1: 使能探针 1	
	探针 1 上升沿锁存	探针 1 上升沿锁存	
1	0:未执行探针1上升沿锁存	0:未执行探针 1 上升沿锁存 1:已执行探针 1	
	1: 已执行探针 1 上升沿锁存	上升沿锁存	
	探针1下降沿锁存	探针 1 下降沿锁存	
2	0:未执行探针1下降沿锁存	0:未执行探针1下降沿锁存	
	1: 已执行探针 1 下降沿锁存	1: 已执行探针 1 下降沿锁存	
3~5	保留	保留	
	 探针1触发信号选择		
6	0: DI3 触发	保留	
_	1. 2 II Juay		
7	探针 2 触发 DI 电平选择	保留	
1	0: DI3 低电平触发 1: DI3 高电平触发		
_	探针 2 使能	探针 2 使能	
8	0: 不使能探针 2 1: 使能探针 2	0: 不使能探针 2 1: 使能探针 2	
	探针 2 上升沿锁存	探针 2 上升沿锁存	
9	0:未执行探针 2 上升沿锁存	0:未执行探针 2 上升沿锁存	
	 1: 已执行探针 2 上升沿锁存	1: 已执行探针 2 上升沿锁存	
	探针 2 下降沿锁存	探针 2 下降沿锁存	
10	0:未执行探针2下降沿锁存	0:未执行探针2下降沿锁存	
	1: 已执行探针 2 下降沿锁存	1: 已执行探针 2 下降沿锁存	
11~13	保留	保留	
1.4	探针 2 触发信号选择	(D 67)	
14	0: DI4 触发 1: Z 信号触发	保留	
15	探针 2 触发 DI 电平选择	(D67)	
15	0: DI4 低电平触发 1: DI4 高电平触发	保留	

Object 60BA _h :探针 1 上升沿位置反馈			
对象描述			
属性	值	属性	值
索引	60BA _h	子索引	00 _h
名称	探针 1 上升沿位置反馈	访问属性	ro
数据结构	Variable	PDO 映射类型	TPDO
数据类型	Integer32	数据范围	-2147483648~2147483647
操作模式	/	默认值	0

记录探针 1 上升沿有效时候的位置指令(指令单位,6062h)

Object 60BB _n :探针 1 下降沿位置反馈				
对象描述				
属性	值	属性	值	
索引	60BB _h	子索引	00 _h	
名称	探针1下降沿位置反馈	访问属性	ro	
数据结构	Variable	PDO 映射类型	TPDO	
数据类型	Integer32	数据范围	-2147483648~2147483647	

默认值

0

记录探针1下降沿有效时候的位置指令(指令单位,6062h)

操作模式

Object 60BC _h :探针 2 上升沿位置反馈			
对象描述		对象入口描述	
属性	值	属性	值
索引	60BCh	子索引	00 _h
名称	探针 2 上升沿位置反馈	访问属性	ro
数据结构	Variable	PDO 映射类型	TPDO
数据类型	Integer32	数据范围	-2147483648~2147483647
操作模式	/	默认值	0
记录探针 2 上升沿有效时候的位置指令(指令单位,6062h)			

Object 60BD _h :探针 2 下降沿位置反馈			
对象描述		对象入口描述	
属性	值	属性	值
索引	60BDh	子索引	00 _h
名称	探针 2 下降沿位置反馈	访问属性	ro
数据结构	Variable	PDO 映射类型	TPDO
数据类型	Integer32	数据范围	-2147483648~2147483647
操作模式	/	默认值	0
记录探针 2 下降沿有效时候的位置指令(指令单位,6062h)			

Object 60COh:插补子模式选择	
对象描述	对象入口描述

属性	值	属性	值
索引	60C0 _h	子索引	00 _h
名称	插补子模式选择	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Integer16	数据范围	-32768~32767
操作模式	IP	默认值	0
位置插补模式下的插补曲线选择			
赋值	插补模式		
-32768~-1	厂家定义,暂无		
0	直线插补		
1~32767	保留		

Object 60C1 _n : 插补数据记录			
X	村象描述		对象入口描述
属性	值	属性	值
索引	60C1 _h	子索引	00 _h
名称	子索引个数	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned8	数据范围	0~512
操作模式	IP	默认值	1
属性	值	属性	值
索引	60C1 _h	子索引	01 _h
名称	插补位移	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Integer32	数据范围	-2147483648~2147483647
操作模式	IP	默认值	0
插补位置模式时位置指令,插补位移为绝对位移指令,每次同步周期到来,上位机发送一次位移指令至从机。单位:p/s			

Object 60C2 _h :插补周期			
X	村象描述		对象入口描述
属性	值	属性	值
索引	6099 _h	子索引	00 _h
名称	子索引个数	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned8	数据范围	0~512
操作模式	IP	默认值	2
属性	值	属性	值
索引	60C2 _h	子索引	01 _h
名称	插补时间单位	访问属性	Rw

数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned8	数据范围	0~512
操作模式	IP	默认值	1

设置插补位置模式下的插补周期(单位: ms)

60C20108h 为插补周期的时间常数,也就实际的插补周期时间参数 (ms)

属性	值	属性	值
索引	60C2 _h	子索引	02 _h
名称	插补时间索引	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Integer8	数据范围	-255~255
操作模式	IP	默认值	-3

60C20208h 为插补周期时间的单位,-3 代表时间单位为 ms

Object 60C5h:最大轮廓加速度				
对象描述			象入口描述	
属性	值	属性 值		
索引	60C5h	子索引	00 _h	
名称	最大轮廓加速度	访问属性	rw	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	Unsigned32	数据范围	0~4294967295	
操作模式	PP/PV/HM	默认值	100000000	

P09.13 右起第四位可以设置加速度单位,

当为 0 时:轮廓位置/轮廓速度模式下位移指令加速段的加速度。意义为设置轮廓位置模式、轮廓速度模式、原点回零模式下加速段的最大允许加速度,限制 6083h。

意义为电机从 0rpm 加速到 1000rpm 时的最大加速度,单位为 rpm/ms

当为1时:为用户指令单位/S^

Object 60C6 _h :最大轮廓减速度			
对象描述		对象入口描述	
属性	值	属性	值
索引	60C6 _h	子索引	00 _h
名称	最大轮廓减速度	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	0~4294967295
操作模式	PP/PV/HM	默认值	100000000

P09.13 右起第四位可以设置加速度单位,

当为 0 时:轮廓位置/轮廓速度模式下位移指令减速段的减速度。意义为设置轮廓位置模式、轮廓速度模式、原点回零模式下加速段的最大允许减速度,限制 6084h。

意义为电机从 1000rpm 减速到 0rpm 时的最大减速度,单位为 rpm/ms

当为1时:为用户指令单位/S2

Object 60E0n:正向最大转矩限制			
对象描述		对象入口描述	
属性	值	属性	值
索引	60E0 _h	子索引	00 _h
名称	正向最大转矩限制	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned16	数据范围	0~65535
操作模式	ALL	默认值	10000
限制伺服的正向最大转矩限,单位: 0.1%			

Object 60E1h:负向最大转矩限			
对象	?描述	5	对象入口描述
属性	值	属性	值
索引	60E1 _h	子索引	00 _h
名称	负向最大转矩限制	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned16	数据范围	0~65535
操作模式	ALL	默认值	10000
限制伺服的负向最大转矩限,单位: 0.1%			

Object 60F2 _h :定位选项代码(Positioning option code)			
对象描述		对象入口描述	
属性 值		属性	值
索引	60F2 _h	子索引	00h
名称	定位选项代码	访问属性	rw
数据结构	Variable	PDO 映射类型	RPDO
数据类型	Unsigned16	数据范围	0~65535
操作模式 PP/IP		默认值	0
保留功能			

Object 60F4 _h :用户位置偏差			
对象	描述	对象入口描述	
属性 值 属性		值	
索引	60F4 _h	子索引	00 _h
名称 用户位置偏差		访问属性	ro
数据结构 Variable		PDO 映射类型	TPDO
数据类型	Integer32	数据范围	-2147483648~2147483647

操作模式	PP/HM/CSP	默认值	0	
反映实时位置偏差 (指令单位	<u>ነ</u>)			
Object 60F8h:最大滑差	Object 60F8 _h :最大滑差(max slippage)			
对象	描述	प्रनेश	对象入口描述	
属性	值	属性	值	
索引	60F8 _h	子索引	00 _h	
名称	最大滑动	访问属性	ro	
数据结构	Variable	PDO 映射类型	RPDO	
数据类型	Integer32	数据范围	-2147483648~2147483647	
操作模式	PV	默认值	100000000	
监控最大滑动是否到达,异步电机用				

Object 60FC _h :电机位置指令反馈			
对象描述		对象入口描述	
属性 值		属性	值
索引	60FCh	子索引	00 _h
名称	电机位置指令反馈	访问属性	ro
数据结构 Variable		PDO 映射类型	TPDO
数据类型 Integer32		数据范围	0~4294967295
操作模式 PP/HM/CSP 默认值 0			
反映电机实时位置指令			
 用户位置指令 (6062h)× 位置因子 (6093h) = 电机位置指令 60FCh(编码器单位)			

Object 60FD _h :DI 输入状态			
对象描述		对象入口描述	
属性	值	属性值	
索引	60FD _h	子索引	00 _h
名称	DI 输入状态	访问属性	ro
数据结构	Variable	PDO 映射类型	TPDO
数据类型	Unsigned32	数据范围	0~4294967295
操作模式	ALL		6291459
		默认值	(0110 0000 0000 0000 0000 0011)

显示 DI 输入状态,不输入任何电平时候默认为 0 Bit 定义 负向限位开关(DI 功能码 15) 1 正向限位开关(DI 功能码 14) 2 原点开关(DI 功能码 28) 3~9 保留 Z 信号(无需设置) 10 外部 DI 输入 1: 探针功能 1 (DI 功能码 39) 11 12 外部 DI 输入 2: 探针功能 2 (DI 功能码 40)

13	紧急停止(DI 功能码 30)
16	与 DI1(P4.01)端子逻辑、功能选择对应
17	与 DI2(P4.02)端子逻辑、功能选择对应
18	与 DI3(P4.03)端子逻辑、功能选择对应
19	与 DI4(P4.04)端子逻辑、功能选择对应
20	与 DI5(P4.05)端子逻辑、功能选择对应
21	与 DI6(P4.06)端子逻辑、功能选择对应
22	与 DI7(P4.07)端子逻辑、功能选择对应
23~31	保留

可通过 P04.11~P04.17 修改 DI 端子逻辑电平,DI6 和 DI7 出厂为正负限位开关,默认高电平有效

Object 60FE _h :强制 DO	制		
X	付象描述	对領	象入口描述
属性	值	属性	值
索引	60FE _h	子索引	00 _h
名称	子索引个数	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned8	数据范围	0~512
操作模式	ALL	默认值	2
	<u> </u>	属性	
	60FE _h	子索引	01 _h
	强制 DO 输出状态	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
数据类型	Unsigned32	数据范围	0~4294967295
操作模式	ALL	默认值	0
	值		
索引	60FE _h	子索引	02 _h
	位屏蔽	访问属性	Rw
数据结构	/	PDO 映射类型	RPDO
	Unsigned32	数据范围	0~4294967295
操作模式 ALL		默认值	0
此功能可以强制输出 DO,J	3E EtherCAT 伺服支持 DO1~DO3		
Bit 定义			

Bit	定义
0	保留
1~15	保留
16~18	DO1~DO3 输出

使用方法步骤:例如强制 DO1~DO3 输出功能

Object 60FF _n :目标速度			
对象描述		对象入口描述	
属性 值		属性	值
索引	60FF _h	子索引	00h
名称	目标速度	访问属性	rw
数据结构 Variable		PDO 映射类型	RPDO
数据类型	Integer32	数据范围	-2147483648~2147483647
操作模式 PV/CSV 默认值 0		0	
设置轮廓速度/同步周期速度模式下,用户速度指令			

Object 6502 _h :支持伺服运行模式			
对象描述		对象入口描述	
属性	属性 值 属性		值
索引	6502 _h	子索引	00 _h
名称	称 支持伺服运行模式		ro
数据结构 Variable		PDO 映射类型	TPDO
数据类型 Unsigned32		数据范围	0~4294967295
操作模式 ALL		默认值	1005

显示驱动器支持的伺服运行模式

Bit	定义	
0	轮廓位置模式(PP)	支持,参考 5.2 节(EtherCAT)
1	速度模式	不支持
2	轮廓速度模式(PV)	支持,参考 5.3 节(EtherCAT)
3	轮廓转矩模式(PT)	支持,参考 5.4 节(EtherCAT)
4	保留	
5	回原模式(HM)	支持,参考 5.5 节(EtherCAT)
6	保留	
7	周期同步位置模式(CSP)	支持,参考 5.7 节(EtherCAT)
8	周期同步位速度模式(CSV)	支持,参考 5.8 节(EtherCAT)
9	周期同步转矩模式(CST)	支持,参考 5.9 节(EtherCAT)
10~31	保留	

浙江禾川科技股份有限公司

电话: 0570-7117888 传真: 0570-7882868

官方网址: www.hcfa.cn

官方邮箱: hechuan@hcfa.cn地址: 浙江省衢州市龙游县工业园区阜财路9号